INSTALLATION MANUAL

R-410A ZT SERIES W/SMART EQUIPMENT™

6.5 - 12.5 Ton

60 Hertz

Table of	contents
General 2 Installation 5 Preceding installation 5 Limitations 6 Location 9 Rigging and handling 9 Ductwork 20 Side panels 20 Condensate drain 21 Compressors 21 Filters 22 Power and control wiring 22 Optional electric heat 35 Optional gas heat 35 Optional nd accessories 37 Economizer sequences 39 Power exhaust 43 Smart Equipment™ economizer board 44 Airflow performance 51	Air balance. 56 Checking air quantity. 56 Operation. 60 Cooling operation. 60 Cooling Operation Errors 61 Reheat mode sequence of operation 62 Electric heating sequence of operations 64 Electric heat operation errors 64 Gas heating sequence of operations 64 Ignition control board 64 Gas heating operation errors 65 Cooling start-up 66 Gas heat start-up 66 Checking gas heat input 67 Navigation components for the Smart Equipment™ control board 69 Smart Equipment™ unit control board 70 Charging the unit 77 Start-up sheet 82
List o	ftables
1 Component location table 7 2 ZT078-150 unit limitations 8 3 ZT078-150 standard unit weights and dimensions 11 4 ZT078-150 unit weights with the Magna Dry option 11 5 ZT078-150 unit accessory weights 11 6 ZT078-150 unit physical dimensions 13 7 ZT078-150 unit clearances 14 8 ZT078-102 side duct dimensions 17 9 ZT120-150 side duct dimensions 17 10 Left/end duct dimensions 18 11 Control wire sizes 24 12 Electrical data 25 13 Physical data 33 14 Electric heat minimum supply air 35 15 Gas pipe sizing - capacity of pipe 36 16 Gas heat minimum supply air 36 17 Supply air limitations 48 18 Altitude/temperature correction factors 49 19 Airflow performance - side duct application 51 20 Airflow performance - bottom duct application 54 21 RPM selection 56 22 Indoor blower specifications 56	23 Power exhaust specifications 56 24 Motor sheave datum diameters 58 25 3 stage dehumidification sequence in normal and alternate mode 62 26 Electric heat limit setting 64 27 Electric heat anticipator setpoints 64 28 Gas heat anticipator setpoints 66 29 Gas rate cubic feet per hour 68 30 Gas heat stages 68 31 Gas heat limit control settings 68 32 Cable for FC buses and SA buses in order of preference 76 33 Ignition control flash codes 76 34 ZT078 charging table - system 1 77 35 ZT078 charging table - system 2 77 36 ZT090 charging table - system 1 78 37 ZT002 charging table - system 2 78 38 ZT102 charging table - system 1 80 41 ZT120 charging table - system 1 80 42 ZT150 charging table - system 1 81 43 ZT150 charging table - system 1 81 43 ZT150 charging table - system 2
List of	figures
1 Unit shipping bracket 5 2 Barometric relief hood - shipping location 5 3 Compressor section 6 4 Predator component location 7 5 4 point and 6 point load weight for W units 10 6 4 point and 6 point load weight for V units 10 7 Center of gravity 10 8 ZT078-102 physical dimensions 12 9 ZT120-150 physical dimensions 13 10 ZT078-150 unit bottom duct openings 15 11 ZT078-150 unit left/end duct opening 16 12 ZT078-150 unit left/end duct opening 18 13 ZT078-150 roof curb 18 14 ZT078-150 transition roof curb 19 15 Side panels with hole plugs 20 16 Return downflow plenum with panel 20 17 Discharge panel in place 20	18 Side panels for economizer hood tops 21 19 Condensate drain 21 20 Field wiring disconnect 23 21 Typical control wiring 24 22 Side entry gas piping 35 23 Bottom entry gas piping 36 24 Simplified VFD wiring 39 25 SE-ECO1001-0 economizer controller 44 26 Belt adjustment 48 27 Altitude/temperature correction factors 49 28 Dry coil delta P 57 29 Cooling operation piping schematic - circuit no. 1 63 30 Reheat operation piping schematic - circuit no. 1 63 31 Typical flame 69 32 Typical two stage gas valve 69 33 Unit control board 70

General

York[®] Predator[®] units are single package air conditioners with optional gas heating designed for outdoor installation on a rooftop or slab and for non-residential use. The units can be equipped with factory or field-installed electric heaters for heating applications.

The units are completely assembled on rigid, permanently attached base rails. All piping, refrigerant charge, and electrical wiring is factory installed and tested. The units require electric power, gas supply (where applicable), and duct connections. The electric heaters have nickel-chrome elements and use single-point power connection.

Safety considerations

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention the signal words **DANGER**, **WARNING** or **CAUTION**.

DANGER indicates an **imminently** hazardous situation, which, if not avoided, <u>will result in death or serious injury</u>.

WARNING indicates a **potentially** hazardous situation, which, if not avoided, **could result in death or serious injury**.

CAUTION indicates a potentially hazardous situation, which, if not avoided <u>may result in minor or moderate injury</u>. It is also used to alert against unsafe practices and hazards involving only property damage.

AWARNING

Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual for assistance or for additional information, consult a qualified contractor, installer or service agency.

A CAUTION

This product must be installed in strict compliance with the installation instructions and any applicable local, state and national codes including, but not limited to building, electrical, and mechanical codes.

AWARNING

Before you perform service or maintenance operations on the unit, turn off the main power switch to unit. Electrical shock could cause personal injury. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual. For assistance or additional information consult a qualified installer, service agency, or the gas supplier.

A CAUTION

This system uses R-410A refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system. Gage sets, hoses, refrigerant containers and recovery systems must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer. Failure to use R-410A compatible servicing equipment may result in property damage or injury.

AWARNING

If the information in this manual is not followed exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

What to do if you smell gas

- Do not try to light any appliance.
- Do not touch any electrical switch.
- Do not use any phone in your building.
- Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
- If you cannot reach your gas supplier, call the fire department.

Installation and service must be performed by a qualified installer, service agency, or the gas supplier.

Due to system pressure, moving parts, and electrical components, the installation and servicing of air conditioning equipment can be hazardous. Only qualified, trained service personnel must install, repair, or service this equipment. Untrained personnel can perform basic maintenance functions of cleaning coils and filters, and replacing filters.

Observe all the precautions in the literature, labels, and tags that accompany the equipment whenever you work on air conditioning equipment. Be sure to follow all other applicable safety precautions and codes including ANSI Z223.1 or CSA-B149.1- latest edition.

Wear safety glasses and work gloves. Use quenching cloth and have a fire extinguisher available during brazing operations.

Inspection

As soon as you receive a unit, you must inspect it for possible damage during transit. If damage is evident, note the extent of the damage on the carrier's freight bill. You must make a separate request for inspection by the carrier's agent in writing.

A CAUTION

This product must be installed in strict compliance with the enclosed installation instructions and any applicable local, state and national codes including, but not limited to, building, electrical, and mechanical codes.

The furnace and its individual shut-off valve must be disconnected from the gas supply piping system during any pressure testing at pressures in excess of 1/2 PSIG.

Pressures greater than 1/2 PSIG will cause gas valve damage resulting in a hazardous condition. If it is subjected to a pressure greater than 1/2 PSIG, the gas valve must be replaced.

The furnace must be isolated from the gas supply piping system by closing its individual manual shut-off valve during any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 PSIG.

Reference

Additional information is available in the following reference forms:

- Technical Guide ZT037-150, 5167821
- General Installation ZT078-150, 5567610
- Smart Equipment[™] Control Quick Start Guide 1136326
- Economizer Accessory -Downflow Factory Installed Downflow Field Installed Horizontal Field Installed
- Motorized Outdoor Air Damper
- Manual Outdoor Air Damper (0-100%)
- Manual Outdoor Air Damper (0-35%)
- Gas Heat Propane Conversion Kit
- Gas Heat High Altitude Kit (Natural Gas)
- Gas Heat High Altitude Kit (Propane)
- -60°F Gas Heat Kit
- Electric Heater Accessory

Renewal parts

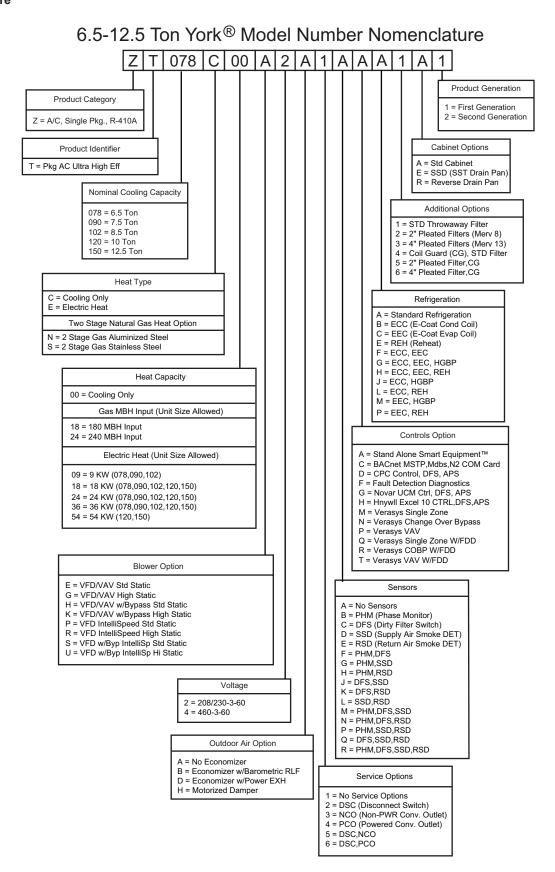
Contact your local York[®] parts distribution center for authorized replacement parts.

Approvals

The design is certified by CSA as follows:

- For use as a cooling only unit, cooling unit with supplemental electric heat or a forced air furnace.
- For outdoor installation only.
- For installation on combustible material and may be installed directly on combustible flooring or, in the U.S., on wood flooring or Class A, Class B or Class C roof covering materials.
- For use with natural gas. The unit can be converted to LP with a kit.

This product must be installed in strict compliance with the enclosed installation instructions and any applicable local, state, and national codes including, but not limited to, building, electrical, and mechanical codes.


AWARNING

Improper installation may create a condition where the operation of the product could cause personal injury or property damage.

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system.

Nomenclature

Installation

Installation safety information

Read the following instructions before you install this appliance. This is an outdoor combination heating and cooling unit. The installer must assure that these instructions are made available to the consumer. The installer must instruct the consumer to retain the instructions for future reference.

- Refer to the unit rating plate for the approved type of gas for this product.
- Install this unit only in a location and position as specified on Page 9 of these instructions.
- Never test for gas leaks with an open flame. Use commercially available soap solution made specifically for the detection of leaks when you check all connections.
 See Pages 5, 37, 37 and 67 of these instructions.
- Always install the furnace to operate within the furnace's intended temperature-rise range with the duct system and within the allowable external static pressure range. This information is specified on the unit name/rating plate and specified on Page 68 of these instructions.
- This equipment is not to be used for the temporary heating of buildings or structures under construction.

It is permitted to use the unit for heating and cooling of buildings or structures under construction where the application and use must comply with all manufacturer's installation instructions including the following:

- Proper installation of vent outlet air and combustion air intake hoods.
- The unit must be operated under thermostatic control.
- Return and supply air ducts must be sealed to the unit.
- · Air filters in place;
- The unit furnace input rate and temperature rise must be set according to the rating plate marking.
- The return air temperature must be maintained between 55°F (13°C) and 80°F (27°C).
- When the construction phase is completed and before formal start up and commissioning, the unit, duct work and components must be thoroughly cleaned and inspected. This is to ensure that the operation of the unit during construction did not contaminate the unit.

Note: If the unit is used during the construction phase, the standard limited warranty provisions go into effect when the unit is placed into operation.

AWARNING

FIRE OR EXPLOSION HAZARD

Failure to follow the safety warning exactly could result in serious injury, death, or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

Preceding installation

 Remove the two screws that hold the brackets in the front, rear, and compressor side fork-lift slots. See Figure 1

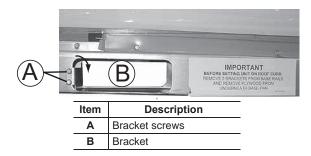


Figure 1: Unit shipping bracket

- 2. Turn each bracket toward the ground. The protective plywood covering drops to the ground.
- Remove the toolless doorknobs and instruction packet, see Figure 3.

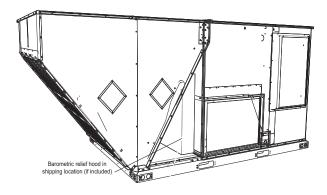


Figure 2: Barometric relief hood - shipping location

Toolless Doorknobs

Installation Instruction Packet

Figure 3: Compressor section

- If a factory option convenience outlet is installed, you must install the weatherproof outlet in the field. The cover is located behind the filter access panel.
 - Remove the shipping label that covers the convenience outlet.
 - Follow the instructions on the back of the weatherproof cover box.
 - c. Attach the cover to the unit with the four (4) screws provided.

A CAUTION

208/230-3-60 units with a factory installed powered convenience outlet option are wired for a 230v power supply. Change the tap on the transformer for 208-3-60 operation. See the unit wiring diagram.

Limitations

These units must be installed in accordance with the following:

In the U.S.A.:

 National Electrical Code, ANSI/NFPA No. 70 - Latest Edition

- National Fuel Gas Code, ANSI Z223.1 Latest Edition
- Gas-Fired Central Furnace Standard, ANSI Z21.47a. -Latest Edition
- 4. Local building codes, and
- 5. Local gas utility requirements

In Canada:

- 1. Canadian Electrical Code, CSA C22.1
- 2. Installation Codes, CSA B149.1.
- 3. Local plumbing and waste water codes, and
- 4. Other applicable local codes.

Refer to the unit application data found in this document.

After installation is complete, you must adjust gas fired units to obtain a temperature rise within the range specified on the unit rating plate.

If components are added to a unit to meet local codes, they are installed at the dealer's and/or customer's expense.

The size of the unit for the proposed installation must be based on a heat loss/heat gain calculation made according to the methods of the Air Conditioning Contractors of America (ACCA).

This furnace is not to be used for temporary heating of buildings or structures under construction.

A CAUTION

The Smart Equipment™ control board used in this product can effectively operate the cooling system down to 0°F when this product is applied in a comfort cooling application for people. An economizer is typically included in this type of application. When you apply this product for process cooling applications (such as computer rooms or switchgear), please call the applications department for Ducted Systems @ 1-877-874-SERV for guidance. Additional accessories may be needed for stable operation at temperatures below 30°F.

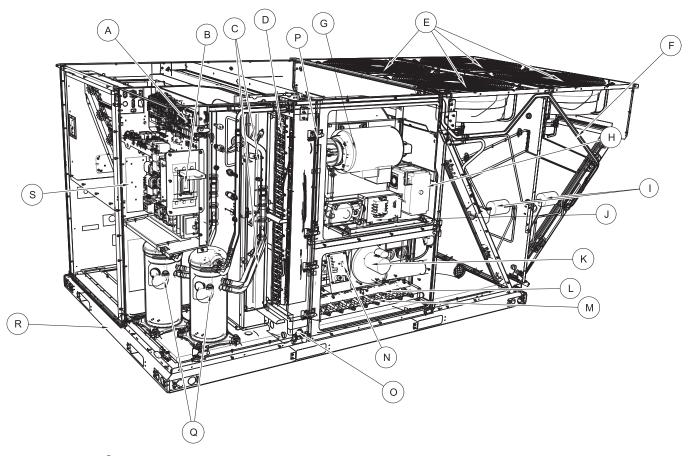


Figure 4: Predator® component location

Figure 4 shows the ZT078-102 model. Table 1 lists the components of the unit.

Table 1: Component location table

Item	Description
Α	Smart Equipment™ supply fan controls with IntelliSpeed™. Includes screw connectors for thermostat wiring and network connections
В	Disconnect location, optional disconnection switch
С	Filter access, 2-inch or 4-inch filter options
D	High efficiency sine wave fin evaporator coil
Е	ECM outdoor fan motor
F	Micro-channel aluminum tube/aluminum fin condenser
G	Premium efficiency belt-drive blower motor
Н	Variable frequency drive
I	Solid core filter drier
J	Slide-out motor and blower assembly for easy adjustment and service

Item	Description
K	Power ventor motor
L	Two stage gas heating to maintain a warm, comfortable temperature
М	20-gauge aluminized steel tubular heat exchanger for long life. Stainless steel option
N	Intelligent control board for safe and efficient operation
0	Slide-out drain pan with 1-inch NPT connection
Р	Toolless door latch
Q	Compressor access (High-efficiency 2-stage compressor)
R	Base rails with forklift slots (three sides) and lifting holes ¹
S	Second model nameplate inside hinged access panel

Roof curbs in eight-and fourteen-inch heights. Roof curbs to transition from a York Sunline™ footprint to the ZT Series footprint are available as a field-installed accessory.

Table 2: ZT078-150 unit limitations

-			Unit limitations					
Size (tons)	Model	Unit voltage	Applied	l voltage	Outdoor DB temp			
(tolis)			Minimum	Maximum	Maximum (°F)			
078	ZT	208/230-3-60	187	252	125			
(6.5)	21	460-3-60	432	504	125			
090	ZT	208/230-3-60	187	252	125			
(7.5)	21	460-3-60	432	504	125			
102	ZT	208/230-3-60	187	252	125			
(8.5)	21	460-3-60	432	504	125			
120	ZT	208/230-3-60	187	252	125			
(10.0)	21	460-3-60	432	504	125			
150	ZT	208/230-3-60	187	252	125			
(12.5)	21	460-3-60	432	504	125			

Location

Use the following guidelines to select a suitable location for these units:

- The unit is designed for outdoor installation only.
- Condenser coils must have an unlimited supply of air.
 Where a choice of location is possible, position the unit on either the north or east side of the building.
- Suitable for mounting on roof curb.
- For ground level installation, use a level concrete slab with a minimum thickness of 4 inches. The length and width must be at least 6 inches greater than the unit base rails. Do not tie the slab to the building foundation.
- Roof structures must be able to support the weight of the unit and its options and accessories. The unit must be installed on a solid, level roof curb or appropriate angle iron frame.
- Maintain level tolerance to 1/2 inch across the entire width and length of the unit.

AWARNING

Excessive exposure of the furnace to contaminated combustion air may result in equipment damage or personal injury. Typical contaminates include the following items:

- · Permanent wave solution
- · Chlorinated waxes and cleaners
- · Chlorine based swimming pool chemicals
- · Water softening chemicals
- · Carbon tetrachloride
- Halogen type refrigerants
- Cleaning solvents (for example, perchloroethylene)
- · Printing inks
- Paint removers
- Varnishes
- · Hydrochloric acid
- · Cements and glues
- · Anti static fabric softeners for clothes dryers
- · Masonry acid washing materials

Clearances

All units require particular clearances for proper operation and service. The installer must make provisions for adequate combustion and ventilation air in accordance with section 5.3 of

Air for Combustion and Ventilation of the National Fuel Gas Code, ANSI Z223.1 – Latest Edition (in U.S.A.), or Sections 7.2, 7.3, or 7.4 of Gas Installation Codes, CSA-B149.1 (in Canada) - Latest Edition, and/or applicable provisions of the local building codes. Refer to Table 7 for the clearances required for combustible construction, servicing, and proper unit operation.

AWARNING

Do not permit overhanging structures or shrubs to obstruct the condenser air discharge outlet, combustion air inlet, or vent outlets.

Rigging and handling

Exercise care when you move the unit. Do not remove any packaging until the unit is near the place of installation. To rig the unit, attach chain or cable slings to the lifting holes provided in the base rails. You must use spreader bars across the top of the unit. The spreader bars must have a length that exceeds the largest dimension across the unit.

If a unit is installed on a roof curb other than a York[®] roof curb, you must apply gasketing to all surfaces that come in contact with the unit underside.

Before lifting the unit, make sure that the unit weight is distributed equally on the rigging cables so that it lifts evenly.

Units may be moved or lifted with a forklift. Slotted openings in the base rails are provided for this purpose.

THE LENGTH OF THE = FORKS MUST BE A MINIMUM OF 60 INCHES.

All panels must be secured in place when the unit is lifted

The condenser coils must be protected from rigging cable damage with plywood or another suitable material.

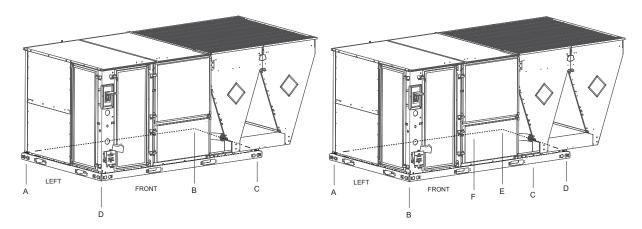


Figure 5: 4 point and 6 point load weight for W units

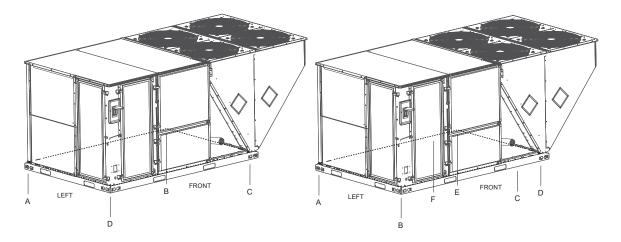


Figure 6: 4 point and 6 point load weight for V units

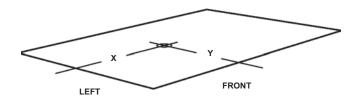
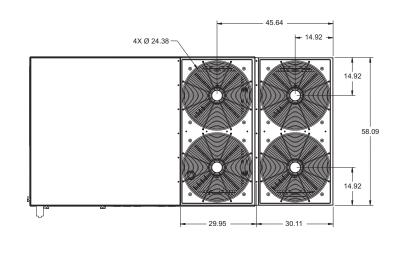


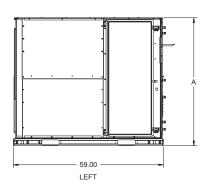
Figure 7: Center of gravity

Table 3: ZT078-150 standard unit weights and dimensions

Size	Model Weight (lbs.)		Center o	Center of gravity 4 point load loc			location (lbs.) 6 point load location (lbs.)								
(tons)	woder	Shipping	Operating	Х	Υ	Α	В	С	D	Α	В	С	D	Е	F
078 (6.5)	ZT	1287	1282	47.25	24.00	245	277	404	357	160	173	188	275	253	233
090 (7.5)	ZT	1288	1283	48.25	25.34	252	299	397	335	164	183	205	272	242	217
102 (8.5)	ZT	1289	1284	47.25	24.75	253	286	396	350	165	179	195	269	248	228
120 (10.0)	ZT	1465	1460	45.00	25.50	312	319	419	410	207	210	214	280	276	272
150 (12.5)	ZT	1483	1478	49.75	24.50	271	343	483	381	174	202	238	335	285	244

Table 4: ZT078-150 unit weights with the Magna Dry option


Size	ize Model Weight (lbs.)		Weight (lbs.) Center of gravity 4 p			4 po	int load location (lbs.)		6 point load location (lbs.)						
(tons)	wouei	Shipping	Operating	Х	Υ	Α	В	С	D	Α	В	С	D	E	F
078 (6.5)	ZT	1293	1288	47.25	24.00	246	278	406	358	161	174	189	276	254	234
090 (7.5)	ZT	1298	1293	48.25	25.34	254	301	400	338	165	184	207	274	244	219
102 (8.5)	ZT	1309	1304	47.25	24.75	257	290	402	355	168	182	198	274	251	232
120 (10)	ZT	1486	1481	45.00	25.50	316	324	425	416	210	213	217	285	280	276
150 (12.5)	ZT	1503	1498	49.75	24.50	274	348	490	386	176	205	241	340	288	248


Table 5: ZT078-150 unit accessory weights

Unit accessory	Weight (lbs.)					
Unit accessory	Shipping	Operating				
Economizer	90	85				
Power exhaust	40	35				
Electric heat ¹	49	49				
Gas heat ²	110	110				

^{1.} The weight given is for the maximum heater size available (54KW).

The weight given is for the maximum number of tube heat exchangers available (8 tubes).

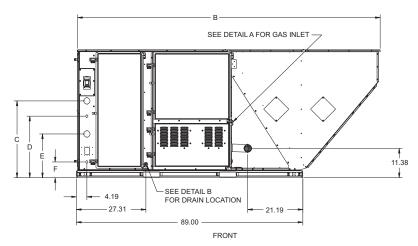


Figure 8: ZT078-102 physical dimensions

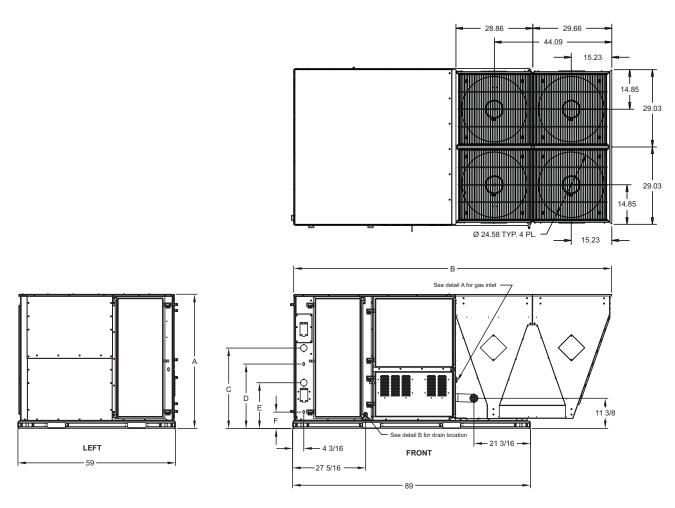
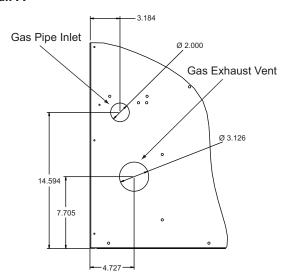
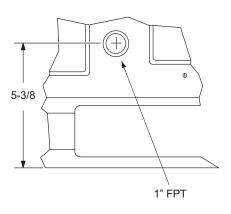



Figure 9: ZT120-150 physical dimensions


Table 6: ZT078-150 unit physical dimensions

Unit model number	Dimension (in.)								
Onit model number	Α	В	С	D	Е	F			
ZT078, ZT090, ZT102	42	89	22 1/8	18 3/16	15 3/16	6 3/16			
ZT120, ZT150	50 3/4	119 1/2	30 3/16	24 3/16	17 3/16	6 3/16			

Detail A

Detail B

42" CABINET

Table 7: ZT078-150 unit clearances

Direction	Distance (in.)	Direction	Distance (in.)
Top ¹	72	Right	12
Front	36	Left	36
Rear	36	Bottom ²	0

- 1. Units must be installed outdoors. Make sure that overhanging structures or shrubs do not obscure the condenser air discharge outlet.
- 2. Units may be installed on combustable floors made from wood or class A, B or C roof covering materials.

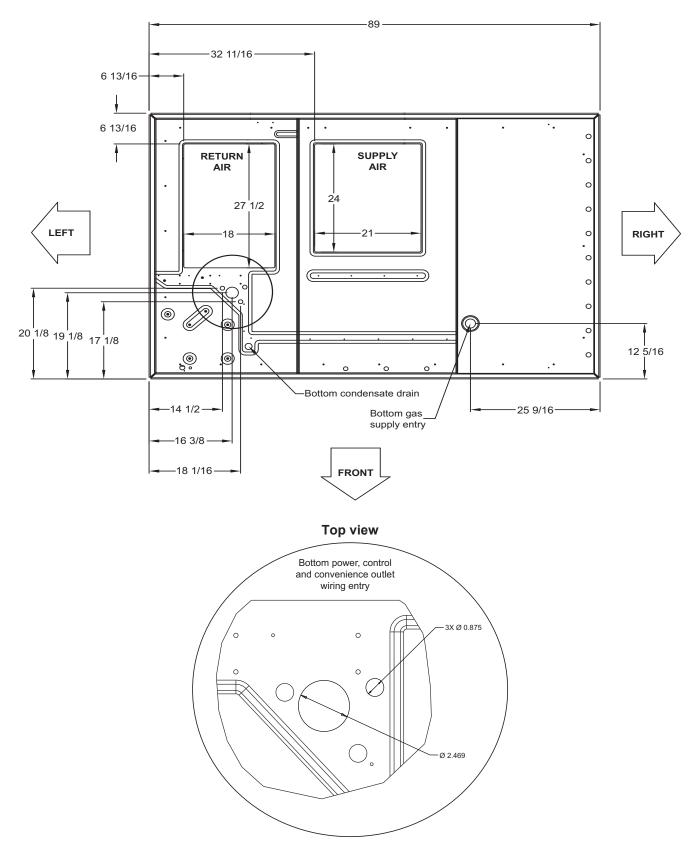


Figure 10: ZT078-150 unit bottom duct openings

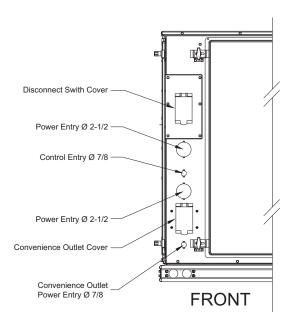


Figure 11: ZT078-150 unit electrical entry

ZT078-102 unit side duct openings

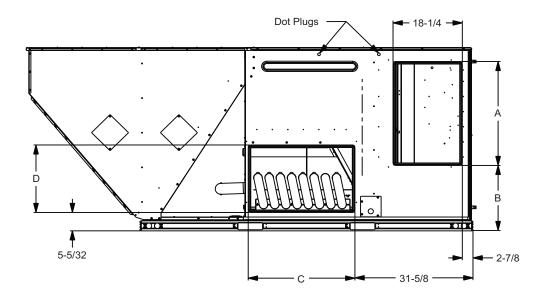


Table 8: ZT078-102 side duct dimensions

Unit model number	Dimension (in.)						
Offic model flumber	Α	В	С	D			
ZT078, 090, 102	28 1/4	18 1/16	28 1/4	18 1/4			

ZT120-150 unit side duct openings

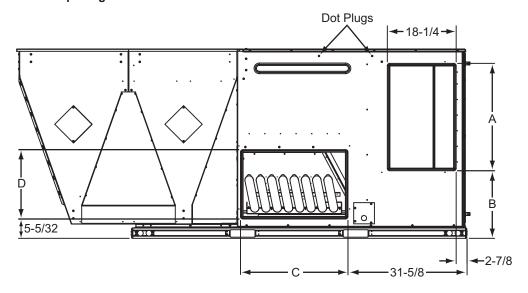


Table 9: ZT120-150 side duct dimensions

Unit model number	Dimension (in.)							
Offic filoder flamber	Α	В	С	D				
ZT120, 150	28 1/4	18 1/16	28 1/4	18 1/4				

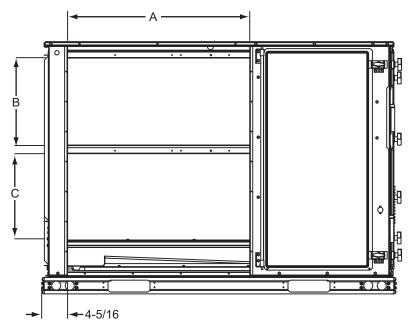


Figure 12: ZT078-150 unit left/end duct opening

Table 10: Left/end duct dimensions

Unit model number		Dimension (in.)	
onit model number	Α	В	С
ZT078, 090, 102	30.358	22.580	22.330
ZT120, 150	30.358	22.580	22.330

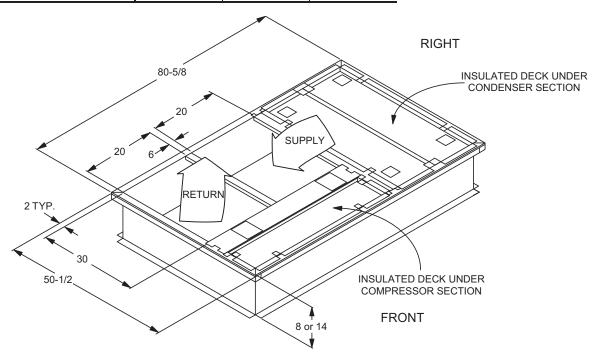


Figure 13: ZT078-150 roof curb

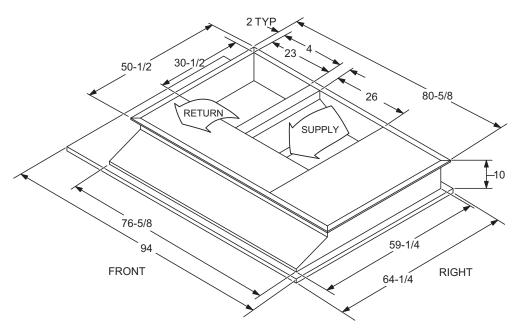


Figure 14: ZT078-150 transition roof curb

Ductwork

You must design and size ductwork according to the methods in Manual D of the Air Conditioning Contractors of America (ACCA) or as recommended by any other recognized authority such as ASHRAE or SMACNA. When you design the duct system, apply the following recommendations.

- Use a closed return duct system. This does not preclude the use of economizers or outdoor fresh air intake.
- Make the supply and return air duct connections at the unit with flexible joints to minimize noise.
- Design the supply and return air duct systems for the CFM and static pressure requirements of the job. Do not size them to match the dimensions of the duct connections on the unit.

See Figure 10 for bottom air duct openings. See Figure ,12 and Tables 8 and 9 for side air duct openings.

Duct covers

Units are shipped with the side duct openings covered.

For a bottom duct application, no duct cover changes are necessary.

For a side duct application, complete the following steps.

- 1. Remove the side duct covers.
- 2. Orient the supply panel with the painted surface up.
- Slide the supply panel between the heat exchanger and the unit bottom. The painted surface must face the heat exchanger. The space is narrow but there is adequate room to install the panel.
- Secure the supply panel with the factory-installed bracket and two screws.
- 5. Orient the return panel with the painted surface down.
- Install the return panel over the corresponding side duct. the painted surface must face the down flow duct opening.
- 7. Secure the return panel with four screws.

A CAUTION

When you fasten ductwork to the side duct flanges on the unit, insert the screws through duct flanges only. DO NOT insert the screws through the casing. You must insulate and water-proof outdoor ductwork.

Figure 15: Side panels with hole plugs

Note: Note the orientation of the panel with the insulation side facing up.

Figure 16: Return downflow plenum with panel

Figure 17: Discharge panel in place

Side panels

Units are shipped with side panels to cover the area where an economizer or motorized damper may be installed. YOu must keep these panels to use them as tops for the economizer rain hoods (see Figure 18).

Figure 18: Side panels for economizer hood tops

Condensate drain

The side condensate drain can be ordered re-oriented to the rear of the cabinet to facilitate condensate piping. A condensate drain connection is available through the base pan for piping inside the roof curb.

Note: Plumbing must conform to local codes.

To install the connection, complete the following steps.

1. Trap the connection according to Figure 19.

Note: You must protect the trap and drain lines from freezing.

2. Install the condensate drain line from the 1 inch NPT female connection on the unit to an open drain. Use a sealing compound on male pipe threads.

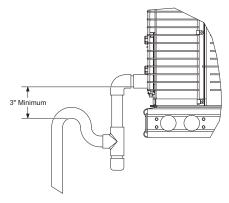


Figure 19: Condensate drain

Compressors

The scroll compressor used in this product is specifically designed to operate with R-410A refrigerant and cannot be interchanged.

This system uses R-410A refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system.

The compressor also uses a polyolester (POE oil), Mobil 3MA POE. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oil can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. Take all the necessary precautions to avoid exposure of the oil to the atmosphere.

Do not leave the system open to the atmosphere. Unit damage could occur due to moisture being absorbed by the **POE oil** in the system. This type of oil is highly susceptible to moisture absorption

POE (polyolester) compressor lubricants are known to cause long term damage to some synthetic roofing materials.

A CAUTION

Exposure, even if immediately cleaned up, may cause embrittlement (leading to cracking) to occur in one year or more. When you perform any service that may risk exposure of compressor oil to the roof, take precautions to protect the roofing.

Procedures that risk oil leakage include, but are not limited to the following:

- · Compressor replacement
- · Repairing refrigerant leaks
- Replacing refrigerant components such as the filter drier, pressure switch, metering device or coil

Units are shipped with compressor mountings that are factoryadjusted and ready for operation.

Do not loosen the compressor mounting bolts.

Filters

Two-inch filters are supplied with each unit. One-inch filters may be used with no modification to the filter racks.

Always install filters ahead of evaporator coil. Keep the filters clean and replace them with filters of the same size and type. Dirty filters reduce the capacity of the unit and result in frosted coils or safety shutdown. See the physical data tables for the number and size of filters needed for the unit.

Do not operate the unit without filters properly installed.

Make sure that panel latches are properly positioned on the unit to maintain an airtight seal.

Power and control wiring

Field wiring to the unit, fuses, and disconnects must conform to provisions of National Electrical Code (NEC), ANSI/NFPA No. 70 – Latest Edition (in U.S.A.), current Canadian Electrical Code C221, and/or local ordinances. The unit must be electrically grounded in accordance with NEC and CEC as specified above and/or local codes.

Voltage tolerances must be maintained at the compressor terminals during starting and running conditions. The voltage tolerances are indicated on the unit rating plate and in Table 2.

A CAUTION

208/230-3-60 units control transformers are factory wired for 230v power supply. Change the tap on the transformer for 208-3-60 operation. See the unit wiring diagram.

The internal wiring harnesses furnished with this unit are an integral part of the design certified unit. Field alteration to comply with electrical codes is not required.

If any of the wire supplied with the unit must be replaced, replacement wire must be of the type shown on the wiring diagram and the same minimum gauge as the replaced wire.

A disconnect must be used for these units. Factory-installed disconnects are available. If you install a disconnect, you must use a field supplied or York International[®] supplied accessory. See Figure 4 for the recommended mounting location.

A CAUTION

Avoid damage to internal components if you drill holes to install a disconnect.

Note: Not all local codes allow the installation of a disconnect on the unit. Confirm compliance with local code before you install a disconnect on the unit.

Electrical line must be sized properly to carry the load.

Note: Use copper conductors only.

Each unit must be wired with a separate branch circuit fed directly from the meter panel and properly fused.

See Figures 20 and 21 for typical field wiring. Refer to the appropriate unit wiring diagram mounted inside the control doors for control circuit and power wiring information.

A CAUTION

When you connect electrical power and control wiring to the unit, you must use water-proof connectors so that water or moisture cannot be drawn into the unit during normal operation. These water-proofing conditions also apply when you install a field-supplied disconnect switch.

Power wiring detail

Units are factory wired for the voltage shown on the unit nameplate. See Table 12, *Electrical data,* on page 25 to size power wiring, fuses, and the disconnect switch.

Power wiring is brought into the unit through the side of the unit or the basepan inside the curb.

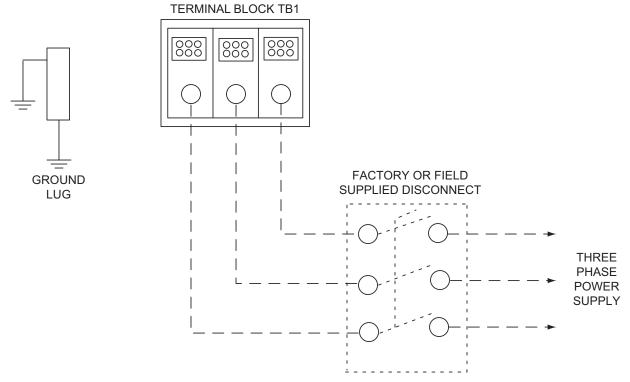


Figure 20: Field wiring disconnect

Thermostat wiring

Install the thermostat on an inside wall approximately 56 inches above the floor. The thermostat must not be subject to drafts, sun exposure, or heat from electrical fixtures or appliances.

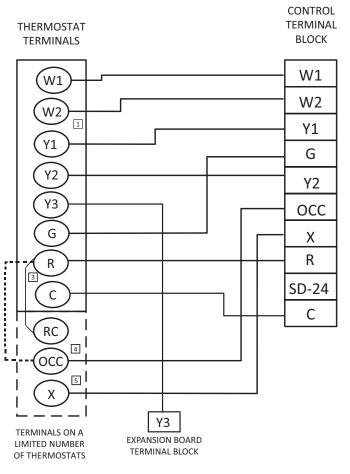
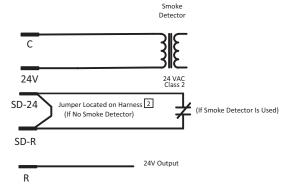

Follow the manufacturer's instructions enclosed with thermostat for the general installation procedure. Use color-coded, insulated wires to connect the thermostat to the unit. See Table 11 for control wire sizing and maximum length.

Table 11: Control wire sizes

Wire size	Maximum length ¹
20 AWG	< 150 feet
18 AWG	150-250 feet
16 AWG	250-500 feet


^{1.} From the unit to the thermostat and back to the unit.

Typical control wiring detail

R~Occ Jumper:

Smart Equipment Control boards come from the factory with a jumper wire between R and OCC terminals on the thermostat terminal strip. Failure to remove this jumper will place the unit into the Occupied mode no matter what the occupancy demand is from the thermostat or EMS system. To allow Thermostat or EMS control of the Occupied mode for the unit, this jumper must be removed during commissioning.

Second stage heating not required on single stage heating units.

Figure 21: Typical control wiring

Jumper is required if there is no Smoke Detector circuit.

³ Jumper is required for any combination of R, RC, or RH.

OCC is an output from the thermostat to indicate the Occupied condition.

⁵ X is an input to the thermostat to display Error Status conditions.

Table 12: Electrical data

ZT078-150 standard indoor blower - without powered convenience outlet

ZT078-	100 8	tario			or D		- W	OD fan			Pwr	e outi	ŧι			1	4	l	Max fuse ² /
Size		RL		·	RA	Mo	· · ·	motors	blower	exh.	conv.	E	lectric	heat opti	on	MCA ¹	MCA ¹ with pwr	Max fuse ² / breaker ³	breaker ³
(tons)	Volt	C1	C2	C1	C2	C1	C2	(each)	motor FLA	motor FLA	outlet FLA	Model	kW	Stages	Amps	(amps)	exhaust (amps)	size (amps)	size with pwr exh. (amps)
												None	-	-	-	45.3	50.8	50	60
												E09	6.8	1	18.9	45.3	50.8	50	60
	208	11.6	11.6	73	73	18	18	3.5	5.2	5.5		E18	13.5	2	37.5	53.4	60.3	60	70
												E24	18	2	50	69	75.9	70	80
								-				E36 None	25.5	2	70.8	95 45.3	101.9 50.8	100 50	110 60
												E09	9	1	21.7	45.3	50.8	50	60
078 (6.5)	230	11.6	11.6	73	73	18	18	3.5	5.2	5.5		E18	18	2	43.3	60.6	67.5	70	70
(6.5)												E24	24	2	57.7	78.6	85.5	80	90
												E36	34	2	81.8	108.8	115.6	110	125
												None E09	9	1	10.8	21.8 21.8	24 24	25 25	25 25
	460	5.7	5.7	38	38	9	9	1.6	2.6	2.2		E18	18	2	21.7	30.4	33.1	35	35
	400					*						E24	24	2	28.9	39.4	42.1	40	45
												E36	34	2	40.9	54.4	57.1	60	60
												None		-	-	48.3	53.8	60	60
	000	44.0	١,,	70	00.4	40	00	0.5	5 0			E09	6.8	1	18.9	48.3	53.8	60	60
	208	11.6	14	73	83.1	18	22	3.5	5.2	5.5		E18 E24	13.5 18	2	37.5 50	53.4 69	60.3 75.9	60 70	70 80
												E36	25.5	2	70.8	95	101.9	100	110
												None	-	-	-	48.3	53.8	60	60
090												E09	9	1	21.7	48.3	53.8	60	60
(7.5)	230	11.6	14	73	83.1	18	22	3.5	5.2	5.5		E18	18	2	43.3	60.6	67.5	70	70
()												E24	24	2	57.7	78.6	85.5	80	90
								-				E36 None	34	2	81.8	108.8	115.6 24.9	110 25	125 30
												E09	9	1	10.8	22.7	24.9	25	30
	460	5.7	6.4	38	41	9	10	1.6	2.6	2.2		E18	18	2	21.7	30.4	33.1	35	35
												E24	24	2	28.9	39.4	42.1	40	45
												E36	34	2	40.9	54.4	57.1	60	60
												None E09	- 6.8	- 1	18.9	52.3 52.3	57.8 57.8	60 60	70 70
	208	14	14	83 1	83.1	22	22	3.5	6.8	5.5		E18	13.5	2	37.5	55.4	62.3	60	70
	200	'-	'-	00.1	00.1	~~		0.0	0.0	0.0		E24	18	2	50	71	77.9	80	80
												E36	25.5	2	70.8	97	103.9	100	110
												None	-	-	-	52.3	57.8	60	70
102		١	١									E09	9	1	21.7	52.3	57.8	60	70
(8.5)	230	14	14	83.1	83.1	22	22	3.5	6.8	5.5		E18 E24	18 24	2	43.3 57.7	62.6 80.6	69.5 87.5	70 90	70 90
												E36	34	2	81.8	110.8	117.6	125	125
												None	-	-	-	24.2	26.4	30	30
												E09	9	1	10.8	24.2	26.4	30	30
	460	6.4	6.4	41	41	10	10	1.6	3.4	2.2		E18	18	2	21.7	31.4	34.1	35	35
												E24	24 34	2	28.9	40.4	43.1	45	45
								-				E36 None	-	-	40.9	55.4 57.3	58.1 62.8	60 70	60 70
												E18	13.5	2	37.5	57.3	62.8	70	70
	208	16.2	16.2	110	110	25	25	3.5	6.8	5.5		E24	18	2	50	71	77.9	80	80
												E36	25.5	2	70.8	97	103.9	100	110
												E54	40.6	2	112.7	149.4	156.3	150	175
												None E18	- 18	2	43.3	57.3 62.6	62.8 69.5	70 70	70 70
120	230	16.2	16.2	110	110	25	25	3.5	6.8	5.5		E24	24	2	57.7	80.6	87.5	90	90
(10)				l	' '	-~		0.0	0.0	0.0		E36	34	2	81.8	110.8	117.6	125	125
												E54	54	2	129.9	138.4	145.3	150	175
												None	-	-	-	26.9	29.1	30	35
	400	7.0	7.0			40	40	1 40	0.4			E18	18	2	21.7	31.4	34.1	35	35
	460	7.6	7.6	52	52	12	12	1.6	3.4	2.2		E24 E36	24 34	2	28.9 40.9	40.4 55.4	43.1 58.1	45 60	45 60
												E54	54	2	65	69.3	72	80	80
		<u> </u>				<u> </u>						LJ4	J4	۷	00	03.0	12	00	00

ZT078-150 standard indoor blower - without powered convenience outlet (Continued)

			Con	press	sors (e	each)		OD fan	Supply		Pwr						MCA ¹	Max fuse ² /	Max fuse ² /
Size (tons)	Volt	RL	Α.	LF	RA	М	СС	motors (each)	blower motor	exh. motor	conv. outlet	E	lectric	heat opti	on	MCA ¹ (amps)	with pwr exhaust	breaker ³	size with
(10110)		C1	C2	C1	C2	C1	C2	FLA	FLA	FLA	FLA	Model	kW	Stages	Amps	,	(amps)	(amps)	pwr exh. (amps)
												None	-	-	-	63.2	68.7	80	80
												E18	13.5	2	37.5	63.2	68.7	80	80
	208	17.6	17.6	136	136	27	27	3.5	9.6	5.5		E24	18	2	50	74.5	81.4	80	90
												E36	25.5	2	70.8	100.5	107.4	110	110
												E54	40.6	2	112.7	152.9	159.8	175	175
												None	-	-	-	63.2	68.7	80	80
150												E18	18	2	43.3	66.1	73	80	80
(12.5)	230	17.6	17.6	136	136	27	27	3.5	9.6	5.5		E24	24	2	57.7	84.1	91	90	100
(12.0)												E36	34	2	81.8	114.3	121.1	125	125
												E54	54	2	129.9	141.9	148.8	175	175
												None	-	-	-	30.2	32.4	35	40
												E18	18	2	21.7	33	35.8	35	40
	460	8.5	8.5	66.1	66.1	13	13	1.6	4.7	2.2		E24	24	2	28.9	42	44.8	45	45
												E36	34	2	40.9	57	59.8	60	60
												E54	54	2	65	70.9	73.6	80	80

- 1. Minimum Circuit Ampacity.
- 2. Dual Element, Time Delay Type.
- 3. HACR type per NEC.

ZT078-150 high static indoor blower - without powered convenience outlet

21070					sors (OD fan	Supply	Pwr	Pwr	lee out				I	1		Max fuse ² /
Size		В	LA		RA	Mo	·c	motors	blower	exh.	conv.	EI	ectric h	eat option	on	MCA ¹	MCA ¹ with pwr	Max fuse ² / breaker ³	breaker ³
(tons)	Volt	C1	C2	C1	C2	C1	C2	(each)	motor FLA	motor FLA	outlet FLA	Model	kW	Stages	Amps	(amps)	exhaust (amps)	size (amps)	size with pwr exh. (amps)
												None	-	-	-	46.9	52.4	50	60
												E09	6.8	1	18.9	46.9	52.4	50	60
	208	11.6	11.6	73	73	18	18	3.5	6.8	5.5		E18	13.5	2	37.5	55.4	62.3	60	70
												E24	18	2	50	71	77.9	80	80
												E36	25.5	2	70.8	97	103.9	100	110
•												None	-	-	-	46.9	52.4	50	60
079												E09	9	1	21.7	46.9	52.4	50	60
078 (6.5)	230	11.6	11.6	73	73	18	18	3.5	6.8	5.5		E18	18	2	43.3	62.6	69.5	70	70
(0.5)												E24	24	2	57.7	80.6	87.5	90	90
												E36	34	2	81.8	110.8	117.6	125	125
												None	-	-	-	22.6	24.8	25	30
												E09	9	1	10.8	22.6	24.8	25	30
	460	5.7	5.7	38	38	9	9	1.6	3.4	2.2		E18	18	2	21.7	31.4	34.1	35	35
												E24	24	2	28.9	40.4	43.1	45	45
												E36	34	2	40.9	55.4	58.1	60	60
												None	-	-	-	52.7	58.2	60	70
	200	11.6	4.4	70	02.4	40	22	2.5	0.6			E09	6.8	1	18.9	52.7	58.2	60 60	70 70
	208	11.6	14	73	83.1	18	22	3.5	9.6	5.5		E18	13.5	2	37.5	58.9	65.8	80	90
												E24 E36	18 25.5	2	50 70.8	74.5 100.5	81.4 107.4	110	110
					_							None	23.3	-	-	52.7	58.2	60	70
												E09	9	1	21.7	52.7	58.2	60	70
090	230	11.6	14	73	83.1	18	22	3.5	9.6	5.5		E18	18	2	43.3	66.1	73	70	80
(7.5)	200	11.0	1-7	10	00.1	10		0.0	3.0	0.0		E24	24	2	57.7	84.1	91	90	100
												E36	34	2	81.8	114.3	121.1	125	125
	_											None	-	-	-	24.8	27	30	30
												E09	9	1	10.8	24.8	27	30	30
	460	5.7	6.4	38	41	9	10	1.6	4.7	2.2		E18	18	2	21.7	33	35.8	35	40
												E24	24	2	28.9	42	44.8	45	45
												E36	34	2	40.9	57	59.8	60	60
												None	-	-	-	55.1	60.6	60	70
												E09	6.8	1	18.9	55.1	60.6	60	70
	208	14	14	83.1	83.1	22	22	3.5	9.6	5.5		E18	13.5	2	37.5	58.9	65.8	60	70
												E24	18	2	50	74.5	81.4	80	90
												E36	25.5	2	70.8	100.5	107.4	110	110
•												None	-	-	-	55.1	60.6	60	70
102												E09	9	1	21.7	55.1	60.6	60	70
(8.5)	230	14	14	83.1	83.1	22	22	3.5	9.6	5.5		E18	18	2	43.3	66.1	73	70	80
()												E24	24	2	57.7	84.1	91	90	100
												E36	34	2	81.8	114.3	121.1	125	125
												None	-	-	-	25.5	27.7	30	30
	400		0.4		۱.,	40	40	4.0	4.7			E09	9	1	10.8	25.5	27.7	30	30
	460	6.4	6.4	41	41	10	10	1.6	4.7	2.2		E18	18	2	21.7	33	35.8	35	40
												E24	24	2	28.9	42	44.8	45	45 60
												E36	34	2	40.9	57	59.8 65.6	60 70	80
												None E18	13.5	2	37.5	60.1 60.1	65.8	70	80
	208	16.2	16.2	110	110	25	25	3.5	9.6	5.5		E0.4	40	_		745	04.4	00	00
	200	10.2	10.2	110	110	23	23	3.5	9.0	5.5		E36	18 25.5	2	70.8	74.5 100.5	107.4	110	110
												E54	40.6	2	112.7	152.9	159.8	175	175
,					-							None	-	-	-	60.1	65.6	70	80
												E18	18	2	43.3	66.1	73	70	80
120	230	16.2	16.2	110	110	25	25	3.5	9.6	5.5		E24	24	2	57.7	84.1	91	90	100
(10)					` ` `	~~						E36	34	2	81.8	114.3	121.1	125	125
												E54	54	2	129.9	141.9	148.8	175	175
•		\vdash			\vdash	\vdash			-	 		None	-	-	-	28.2	30.4	35	35
						1						E18	18	2	21.7	33	35.8	35	40
	460	7.6	7.6	52	52	12	12	1.6	4.7	2.2		E24	24	2	28.9	42	44.8	45	45
												E36	34	2	40.9	57	59.8	60	60
												E54	54	2	65	70.9	73.6	80	80
									-									_	

ZT078-150 high static indoor blower - without powered convenience outlet (Continued)

			Con	npress	sors (e	each)		OD fan	Supply	Pwr	Pwr						MCA ¹	Max fuse ² /	Max fuse ² /
Size (tons)	Volt	RI	_A	LF	RA	M	cc	motors (each)	blower motor	exh. motor	conv. outlet	EI	ectric h	eat optic	on	MCA ¹ (amps)	with pwr exhaust	breaker ³	breaker ³ size with
(10110)		C1	C2	C1	C2	C1	C2	FLA	FLA	FLA	FLA	Model	kW	Stages	Amps	` ' '	(amps)	(amps)	pwr exh. (amps)
												None	-	-	1	67.6	73.1	80	90
												E18	13.5	2	37.5	67.6	73.1	80	90
	208	17.6	17.6	136	136	27	27	3.5	14	5.5		E24	18	2	50	80	86.9	80	90
												E36	25.5	2	70.8	106	112.9	110	125
												E54	40.6	2	112.7	158.4	165.3	175	175
•												None	-	-	-	67.6	73.1	80	90
150												E18	18	2	43.3	71.6	78.5	80	90
(12.5)	230	17.6	17.6	136	136	27	27	3.5	14	5.5		E24	24	2	57.7	89.6	96.5	90	100
(12.0)												E36	34	2	81.8	119.8	126.6	125	150
												E54	54	2	129.9	147.4	154.3	175	175
												None	-	-	-	32.1	34.3	40	40
												E18	18	2	21.7	35.4	38.1	40	40
	460	8.5	8.5	66.1	66.1	13	13	1.6	6.6	2.2		E24	24	2	28.9	44.4	47.1	45	50
												E36	34	2	40.9	59.4	62.1	60	70
												E54	54	2	65	73.3	76	80	90

- Minimum Circuit Ampacity.
 Dual Element, Time Delay Type.
 HACR type per NEC.

ZT078-150 standard indoor blower - with powered convenience outlet

		1	Com	press	ors (e	each)		OD fan	Supply	Pwr	Pwr						MCA ¹	Max	Max fuse ² /
Size	Volt	RI	LA.	LF	RA	МС	СС	motors (each)	blower motor	exh. motor	conv.	El	ectric h	eat option	on	MCA ¹	with pwr	fuse ² / breaker ³	breaker ³ size with
(tons)		C1	C2	C1	C2	C1	C2	FLA	FLA	FLA	FLA	Model	kW	Stages	Amps	(amps)	exhaust (amps)	size (amps)	pwr exh. (amps)
												None	-	-	-	55.3	60.8	60	70
												E09	6.8	1	18.9	55.3	60.8	60	70
	208	11.6	11.6	73	73	18	18	3.5	5.2	5.5	20	E18	13.5	2	37.5	65.9	72.8	70	80
												E24	18	2	50	81.5	88.4	90	90
												E36	25.5	2	70.8	107.5	114.4	110	125 70
												None E09	9	1	21.7	55.3 55.3	60.8 60.8	60 60	70
078	230	11.6	11.6	73	73	18	18	3.5	5.2	5.5	20	E18	18	2	43.3	73.1	80	80	80
(6.5)	200	11.0	11.0	7.5	10	10	10	0.0	0.2	0.0	20	E24	24	2	57.7	91.1	98	100	100
												E36	34	2	81.8	121.3	128.1	125	150
												None	-	-	-	26.8	29	30	30
												E09	9	1	10.8	26.8	29	30	30
	460	5.7	5.7	38	38	9	9	1.6	2.6	2.2	20	E18	18	2	21.7	36.6	39.4	40	40
												E24	24	2	28.9	45.6	48.4	50	50
												E36	34	2	40.9	60.6	63.4	70	70
												None	-	-	-	58.3	63.8	70	70
	000			70	00.4	40		0.5	- 0		00	E09	6.8	1	18.9	58.3	63.8	70 70	70
	208	11.6	14	73	83.1	18	22	3.5	5.2	5.5	20	E18	13.5	2	37.5	65.9	72.8	70	80
												E24 E36	18	2	50	81.5	88.4	90 110	90 125
			\vdash									None	25.5	2	70.8	107.5 58.3	114.4 63.8	70	70
												E09	9	1	21.7	58.3	63.8	70	70
090	230	11.6	14	73	83.1	18	22	3.5	5.2	5.5	20	E18	18	2	43.3	73.1	80	80	80
(7.5)	200	11.0	17	70	00.1	10	~~	0.0	0.2	0.0	20	E24	24	2	57.7	91.1	98	100	100
												E36	34	2	81.8	121.3	128.1	125	150
										-		None	-	-	-	27.7	29.9	30	35
												E09	9	1	10.8	27.7	29.9	30	35
	460	5.7	6.4	38	41	9	10	1.6	2.6	2.2	20	E18	18	2	21.7	36.6	39.4	40	40
												E24	24	2	28.9	45.6	48.4	50	50
												E36	34	2	40.9	60.6	63.4	70	70
												None	-	-	-	62.3	67.8	70	80
												E09	6.8	1	18.9	62.3	67.8	70	80
	208	14	14	83.1	83.1	22	22	3.5	6.8	5.5	20	E18	13.5	2	37.5	67.9	74.8	70	80
												E24	18	2	50	83.5	90.4	90	100
			\vdash									E36	25.5	2	70.8	109.5 62.3	116.4	110	125 80
												None E09	9	1	21.7	62.3	67.8 67.8	70 70	80
102	230	14	14	83.1	83.1	22	22	3.5	6.8	5.5	20	E18	18	2	43.3	75.1	82	80	90
(8.5)	200	'-	17	00.1	00.1		~~	0.0	0.0	0.0	20	E24	24	2	57.7	93.1	100	100	100
												E36	34	2	81.8	123.3	130.1	125	150
												None	-	-	-	29.2	31.4	35	35
												E09	9	1	10.8	29.2	31.4	35	35
	460	6.4	6.4	41	41	10	10	1.6	3.4	2.2	20	E18	18	2	21.7	37.6	40.4	40	45
												E24	24	2	28.9	46.6	49.4	50	50
												E36	34	2	40.9	61.6	64.4	70	70
												None	-	-	-	67.3	72.8	80	80
	000		46.0	44.5					0.0			E18	13.5	2	37.5	67.9	74.8	80	80
	208	16.2	16.2	110	110	25	25	3.5	6.8	5.5	20	E24	18	2	50	83.5	90.4	90	100
					1							E36	25.5	2	70.8	109.5	116.4	110	125
			\vdash							<u> </u>		E54	40.6	2	112.7	161.9	168.8	175	175
					1							None E18	- 18	2	43.3	67.3 75.1	72.8 82	80 80	80 90
120	230	16.2	16.2	110	110	25	25	3.5	6.8	5.5	20	E24	24	2	57.7	93.1	100	100	100
(10)	230	10.2	10.2	110	110	20	25	5.5	0.0	3.5	20	E36	34	2	81.8	123.3	130.1	125	150
					1							E54	54	2	129.9	150.9	157.8	175	175
	-	 	\vdash				 			 		None	-	-	-	31.9	34.1	35	40
					1							E18	18	2	21.7	37.6	40.4	40	45
	460	7.6	7.6	52	52	12	12	1.6	3.4	2.2	20	E24	24	2	28.9	46.6	49.4	50	50
												E36	34	2	40.9	61.6	64.4	70	70
			L		L	L				<u></u>		E54	54	2	65	75.5	78.3	80	90
			-											-				-	

ZT078-150 standard indoor blower - with powered convenience outlet (Continued)

			Con	press	ors (e	each)		OD fan	Supply	Pwr	Pwr						MCA ¹	Max	Max fuse ² /
Size (tons)	Volt	RI	-A	LF	RA	MC	СС	motors (each)	blower motor	exh. motor	conv. outlet	EI	ectric h	eat optio	on	MCA ¹ (amps)		fuse ² / breaker ³	
(*****)		C1	C2	C1	C2	C1	C2	FLA	FLA	FLA	FLA	Model	kW	Stages	Amps	` . ,	(amps)	size (amps)	pwr exh. (amps)
												None		-	-	73.2	78.7	90	90
												E18	13.5	2	37.5	73.2	78.7	90	90
	208	17.6	17.6	136	136	27	27	3.5	9.6	5.5	20	E24	18	2	50	87	93.9	90	100
												E36	25.5	2	70.8	113	119.9	125	125
												E54	40.6	2	112.7	165.4	172.3	175	175
												None	-	-	-	73.2	78.7	90	90
150												E18	18	2	43.3	78.6	85.5	90	90
(12.5)	230	17.6	17.6	136	136	27	27	3.5	9.6	5.5	20	E24	24	2	57.7	96.6	103.5	100	110
(12.5)												E36	34	2	81.8	126.8	133.6	150	150
												E54	54	2	129.9	154.4	161.3	175	175
												None	-	-	-	35.2	37.4	40	45
												E18	18	2	21.7	39.3	42	40	45
	460	8.5	8.5	66.1	66.1	13	13	1.6	4.7	2.2	20	E24	24	2	28.9	48.3	51	50	60
												E36	34	2	40.9	63.3	66	70	70
												E54	54	2	65	77.1	79.9	90	90

- Minimum Circuit Ampacity.
 Dual Element, Time Delay Type.
- 3. HACR type per NEC.

ZT078-150 high static indoor blower - with powered convenience outlet

			Com	pres	sors (each)		OD fan	Supply	Pwr	Pwr						MCA ¹	Max fuse ² /	Max fuse ² /
Size	Volt	RI	_A	LF	RA	М	СС	motors (each)	blower motor	exh. motor	conv. outlet	E	lectric h	eat option	on	MCA ¹	with pwr	breaker ³	breaker ³ size with
(tons)		C1	C2	C1	C2	C1	C2	FLA	FLA	FLA	FLA	Model	kW	Stages	Amps	(amps)	exhaust (amps)	size (amps)	pwr exh. (amps)
												None	-	-	-	56.9	62.4	60	70
												E09	6.8	1	18.9	56.9	62.4	60	70
	208	11.6	11.6	73	73	18	18	3.5	6.8	5.5	20	E18	13.5	2	37.5	67.9	74.8	70	80
												E24 E36	18 25.5	2	50 70.8	83.5 109.5	90.4 116.4	90 110	100 125
- 1			\vdash			_						None	23.3	-	70.0	56.9	62.4	60	70
												E09	9	1	21.7	56.9	62.4	60	70
078	230	11.6	11.6	73	73	18	18	3.5	6.8	5.5	20	E18	18	2	43.3	75.1	82	80	90
(6.5)												E24	24	2	57.7	93.1	100	100	100
												E36	34	2	81.8	123.3	130.1	125	150
												None	-	-	-	27.6	29.8	30	35
												E09	9	1	10.8	27.6	29.8	30	35
	460	5.7	5.7	38	38	9	9	1.6	3.4	2.2	20	E18	18	2	21.7	37.6	40.4	40	45
												E24	24	2	28.9	46.6	49.4	50	50
												E36 None	34	2	40.9	61.6 62.7	64.4 68.2	70 70	70 80
												E09	6.8	- 1	18.9	62.7	68.2	70	80
	208	11.6	14	73	83.1	18	22	3.5	9.6	5.5	20	E18	13.5	2	37.5	71.4	78.3	80	80
	200	11.0	17	10	00.1	10		0.0	3.0	0.0	20	E24	18	2	50	87	93.9	90	100
												E36	25.5	2	70.8	113	119.9	125	125
- 1												None	-	-	-	62.7	68.2	70	80
000												E09	9	1	21.7	62.7	68.2	70	80
090	230	11.6	14	73	83.1	18	22	3.5	9.6	5.5	20	E18	18	2	43.3	78.6	85.5	80	90
(7.5)												E24	24	2	57.7	96.6	103.5	100	110
												E36	34	2	81.8	126.8	133.6	150	150
												None	-	-	-	29.8	32	35	35
												E09	9	1	10.8	29.8	32	35	35
	460	5.7	6.4	38	41	9	10	1.6	4.7	2.2	20	E18	18	2	21.7	39.3	42	40	45
												E24	24	2	28.9	48.3	51	50	60
												E36	34	2	40.9	63.3	66	70	70
												None	-	-	- 10.0	65.1	70.6	70 70	80 80
	208	14	14	83.1	02.4	22	22	3.5	9.6	5.5	20	E09 E18	6.8 13.5	2	18.9 37.5	65.1 71.4	70.6 78.3	80	80
	200	14	14	03.1	03.1	22	22	3.5	9.0	5.5	20	E24	18	2	50	87	93.9	90	100
												E36	25.5	2	70.8	113	119.9	125	125
ŀ												None	-	-	-	65.1	70.6	70	80
												E09	9	1	21.7	65.1	70.6	70	80
102	230	14	14	83.1	83.1	22	22	3.5	9.6	5.5	20	E18	18	2	43.3	78.6	85.5	80	90
(8.5)												E24	24	2	57.7	96.6	103.5	100	110
												E36	34	2	81.8	126.8	133.6	150	150
							Î					None	-	-	-	30.5	32.7	35	35
												E09	9	1	10.8	30.5	32.7	35	35
	460	6.4	6.4	41	41	10	10	1.6	4.7	2.2	20	E18	18	2	21.7	39.3	42	40	45
												E24	24	2	28.9	48.3	51	50	60
			\Box				<u> </u>					E36	34	2	40.9	63.3	66	70	70
												None	10.5	-	- 27 -	70.1 71.4	75.6	80	90 90
	200	16 2	16.2	110	110	25	25	3.5	9.6	5.5	20	E18 E24	13.5 18	2	37.5 50	87	78.3 93.9	80 90	100
	200	10.2	10.2	110	110	23	23	3.3	9.0	3.3	20	E36	25.5	2	70.8	113	119.9	125	125
												E54	40.6	2	112.7	165.4	172.3	175	175
}			\vdash		Н		\vdash	-	 	 		None		-	-	70.1	75.6	80	90
,												E18	18	2	43.3	78.6	85.5	80	90
120	230	16.2	16.2	110	110	25	25	3.5	9.6	5.5	20	E24	24	2	57.7	96.6	103.5	100	110
(10)												E36	34	2	81.8	126.8	133.6	150	150
												E54	54	2	129.9	154.4	161.3	175	175
												None	-	-	-	33.2	35.4	40	40
												E18	18	2	21.7	39.3	42	40	45
	460	7.6	7.6	52	52	12	12	1.6	4.7	2.2	20	E24	24	2	28.9	48.3	51	50	60
												E36	34	2	40.9	63.3	66	70	70
												E54	54	2	65	77.1	79.9	90	90

ZT078-150 high static indoor blower - with powered convenience outlet (Continued)

			Con	press	sors (each)		OD fan	Supply	Pwr	Pwr						MCA ¹	Max fuse ² /	Max fuse ² /
Size (tons)	Volt	RI	_A	LF	RA	М	СС	motors (each)	blower motor	exh. motor	conv. outlet	E	lectric h	eat option	on	MCA ¹ (amps)	with pwr exhaust	breaker ³	breaker ³ size with
(10.110)		C1	C2	C1	C2	C1	C2	FLA	FLA	FLA	FLA	Model	kW	Stages	Amps	,	(amps)	(amps)	pwr exh. (amps)
												None	-	-	-	77.6	83.1	90	100
												E18	13.5	2	37.5	77.6	83.8	90	100
	208	17.6	17.6	136	136	27	27	3.5	14	5.5	20	E24	18	2	50	92.5	99.4	100	100
												E36	25.5	2	70.8	118.5	125.4	125	150
												E54	40.6	2	112.7	170.9	177.8	175	200
												None	-	-	-	77.6	83.1	90	100
150												E18	18	2	43.3	84.1	91	90	100
(12.5)	230	17.6	17.6	136	136	27	27	3.5	14	5.5	20	E24	24	2	57.7	102.1	109	110	110
(12.0)												E36	34	2	81.8	132.3	139.1	150	150
												E54	54	2	129.9	159.9	166.8	175	175
												None	-	-	-	37.1	39.3	45	45
												E18	18	2	21.7	41.6	44.4	45	45
	460	8.5	8.5	66.1	66.1	13	13	1.6	6.6	2.2	20	E24	24	2	28.9	50.6	53.4	60	60
												E36	34	2	40.9	65.6	68.4	70	70
												E54	54	2	65	79.5	82.3	90	90

- Minimum Circuit Ampacity.
 Dual Element, Time Delay Type.
- 3. HACR type per NEC.

Table 13: Physical data ZT078-150

Commonant					Mo	dels				
Component	ZT	078	ZT	090	ZT	102	ZT	120	ZT	150
Nominal tonnage	6	.5	7	.5	8	.5	1	0	12	2.5
AHRI cooling performance										
Gross capacity @ AHRI A point (Mbh)	760	000	91	500	104	000	121	000	147	'500
AHRI net capacity (Mbh)	740	000	890	000	101	000	117	'000	142	2000
EER	12.4 ¹	/12.6 ²	13	3.1	13	3.1	13	3.1	12	2.5
IEER with Intellispeed	21	.2	2	:1	2	:1	21	1.2	20).2
VAV IEER	20).5	20).5	18	3.2	19	9.5	1	9
CFM	27	00	30	000	34	.00	36	00	41	50
System power (KW)	5.	92	6.	79	7.	71	8.	93	11	.44
Refrigerant type	R-4	10A	R-4	10A	R-4	10A	R-4	10A	R-4	10A
Refrigerant charge (lb-oz)										
System 1	5-	10	8	-0	8	-4	7-	12	10)-8
System 2	5-	14	7-	14	8	-4	7-	12	9-	12
Refrigerant charge (lb-oz) Magna Dry option										
System 1	6-	-2	8-	10	8	-8	8	-8	10)-8
System 2	5-	14	7-	14	8	-4	7-	12	9-	12
AHRI heating performance										
Heating model	N12	N18	N12	N18	N12	N18	N18	N24	N18	N24
Heat input (K Btu)	120	180	120	180	120	180	180	240	180	240
Heat output (K Btu)	96	144	96	144	96	144	144	192	144	192
AFUE %	-	-	-	-	-	-	-	-	-	-
Steady state efficiency (%)	80	80	80	80	80	80	80	80	80	80
No. burners	4	6	4	6	4	6	6	8	6	8
No. stages	2 ³	2 ³	2 ³	2 ³	2 ³	2 ³	2 ³	2 ³	2 ³	2 ³
Temperature rise range (°F)	20-50	35-65	15-45	30-60	10-40	25-55	20-50	35-65	10-40	25-55
Gas limit setting (°F)	165	165	165	165	215	195	195	160	195	160
Gas piping connection (in.)	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Dimensions (inches)										
Length	119	-1/2	119	-1/2		-1/2	119)-1/2	119	-1/2
Width	5	9	5	9	5	9		59	5	i9
Height		3/4		-3/4		3/4		-3/4		-3/4
Operating weight (lbs.)		82		83		84		60	14	78
Operating weight (lbs.) with Magna Dry	12	88	12	93	13	04	14	81	14	98
Compressors ⁴										
Туре		e scroll		e scroll	Ŭ	e scroll		e scroll		e scroll
Quantity		2		2		2		2		2
Unit capacity steps (%)	34 / 67	7 / 100	29 / 5	7 / 100	34 / 6	7 / 100	34 / 6	7 / 100	34 / 6	7 / 100
Condenser coil data										
Face area (sq. ft.)		9.0		9.0		9.0		7.5		7.5
Rows		•		1		2		1	ļ	2
Fins per inch		3		3		3		23	ļ	23
Tube diameter (in.)/MM		/18		/25		/18		1/18	I	1/18
Circuitry type		ass hannel		ass hannel		ass hannel		ass channel		ass hannel

ZT078-150 (Continued)

					Мо	dels				
Component	ZT	078	ZT	090	ZT	102	ZT	120	ZT	150
Nominal tonnage	6	.5	7	.5	8	.5	1	0	12	2.5
Evaporator coil data										
Face area (sq. ft.)	2	:9	2	29	2	:9	47	7.5	47	7.5
Rows	;	3		4	4	4		4		4
Fins per inch	1	5	1	5	1	5	1	5	1	15
Tube diameter	0.3	375	0.3	375	0.3	375	0.3	375	0.3	375
Circuitry type	Intert	wined	Intert	wined	Intert	wined	Intert	wined	Intert	wined
Refrigerant control	T)	ΚV	T)	ΧV	TX	<v< td=""><td>T</td><td>ΧV</td><td>T</td><td>XV</td></v<>	T	ΧV	T	XV
Reheat option coil data					-		-		-	
Face area (sq. ft.)	1	0	1	0	1	0	1	0	1	10
Rows		1	:	2	2	2	:	2		2
Fins per inch	1	3	1	3	1	3	1	3	1	3
Tube diameter (in.)	3	/8	3	/8	3.	/8	3	/8	3	/8
Condenser fan data										
Quantity of fans		4		4	4	4		4		4
Fan diameter (inches)	2	4	2	24	2	4	2	24	2	24
Туре	Pr	ор	Pr	ор	Pr	ор	Pr	op	Pr	rop
Drive type	Dir	ect	Dir	ect	Dir	ect	Dir	ect	Dii	rect
Quantity of motors		4		4	4	4		4		4
Motor HP each	1	/3	1	/3	1.	/3	1	/3	1	/3
No. speeds	:	2	:	2	2	2	:	2	:	2
1st speed/2nd speed RPM	850	/600	850	/600	850	/700	850	/700	900	/700
1st speed/2nd speed total CFM	14000)/9500	14000	0/9500	14000	/11000	14000	/11000	15000	/11000
Belt drive evap. fan data										
Quantity		1		1		1		1		1
Fan size (inches)	15 :	x 15	15	x 15	15 :	x 15	15	x 15	15	x 15
Туре	Centi	ifugal	Centi	rifugal		ifugal	Centi	rifugal	Cent	rifugal
Motor sheave	1VL40	1VM50	1VL40	1VM50	1VM50	1VM50	1VM50	1VM50	1VM50	1VP56
Blower sheave	AK74	AK74	AK69	AK69	AK89	AK74	AK84	AK74	AK74	BK77
Belt	A53	A54	A52	A54	A56	A54	A56	A54	A54	BX55
Motor HP each	1-1/2	2	1-1/2	3	2	3	2	3	3	5
RPM	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725
Frame size	56	56	56	56	56	56	56	56	56	184T
Filters										
Quantity - size			,		,		· ·	20 x 2) ^{5, 6}	4 - (24 x	20 x 2) ^{5, 6}
Quality - 3120	4 - (24 x	$(20 \times 4)^7$	4 - (24 x	$(20 \times 4)^7$	4 - (24 x	20 x 4) ⁷	4 - (24 x	(20 x 4) ⁷	4 - (24 x	(20 x 4) ⁷

^{1.} Gas units

Cooling only, electric
 1st stage 60% of 2nd stage
 ZT078, ZT090, ZT102, ZT120, and ZT150 have crankcase heaters as standard.

^{5. 2} in. throwaway, standard, MERV (Minimum Efficiency Reporting Value) 3.

^{6. 2} in. pleated, optional, MERV 8.

^{7. 4} in. pleated, optional, MERV 13.

Optional electric heat

The factory-installed heaters are wired for single point power supply. You only need to bring the power supply into the single point terminal block.

These CSA approved heaters are located within the central compartment of the unit with the heater elements extending in to the supply air chamber.

Fuses are supplied, where required, by the factory. Some kW sizes require fuses and others do not. See Table 14 for minimum CFM limitations. See Table 12 for electrical data.

Table 14: Electric heat minimum supply air

				Minimum s	upply air	(CFM)	
Size (tons)	Model	Voltage		He	ater kW		
			9	18	24	36	54
078	ZT	208/230-3-60	1950	1950	1950	1950	-
(6.5)	21	460-3-60	1950	1950	1950	1950	-
090	ZT	208/230-3-60	1950	1950	1950	1950	-
(7.5)	21	460-3-60	2250	2250	2250	2250	-
102	ZT	208/230-3-60	2550	2550	2550	2550	-
(8.5)	21	460-3-60	2550	2550	2550	2550	-
120	ZT	208/230-3-60	-	3000	3000	3000	3500
(10)	21	460-3-60	-	3000	3000	3000	3000
150	ZT	208/230-3-60	-	3750	3750	3750	4000
(12.5)	21	460-3-60	-	3750	3750	3750	3750

Optional gas heat

The optional gas-fired heaters have aluminized-steel or optional stainless steel, tubular heat exchangers with spark ignition.

Gas piping

Proper sizing of gas piping depends on the cubic feet per hour of gas flow required, specific gravity of the gas, and the length of run.

Follow the "National Fuel Gas Code" Z223.1 (in U.S.A.) or the current Gas Installation Codes CSA-B149.1 (in Canada) in all cases unless they are superseded by local codes or gas utility requirements.

See Table 15, *Gas pipe sizing - capacity of pipe*, on page 36. The heating value of the gas may vary by locality. You must check the value with the local gas utility.

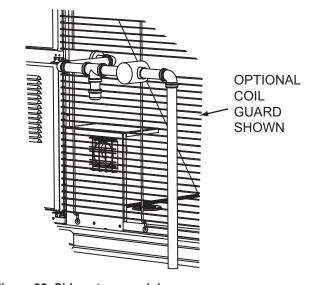


Figure 22: Side entry gas piping

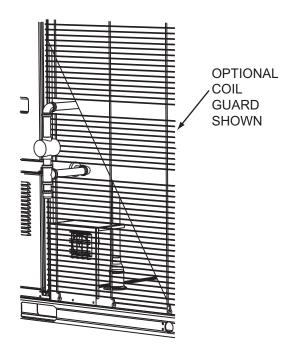


Figure 23: Bottom entry gas piping

Length of pipe (ft.)	Nominal iron pipe size				
	3/4 in.	1 in.	1-1/4 in.		
10	278	520	1050		
20	190	350	730		
30	152	285	590		
40	130	245	500		
50	115	215	440		
60	105	195	400		
70	96	180	370		
80	90	170	350		
90	84	160	320		
100	79	150	305		

Table 15: Gas pipe sizing - capacity of pipe

Note: Maximum capacity of pipe in cubic feet of gas per hour based upon a pressure drop of 0.3 inch W.C. and 0.6 specific gravity gas.

Note: There may be a local gas utility requirement specifying a minimum diameter for gas piping. All units require a 3/4 inch pipe connection at the entrance fitting. Line should not be sized smaller than the entrance fitting size.

Table 16: Gas heat minimum supply air

Size (tons)	Model	Heat size	Supply	Supply air (CFM) Heating	
			Hea		
			Minimum	Maximum	
078	ZT	N12	1950	3250	
(6.5)		N18	1950	3250	
090	ZT	N12	2250	3750	
(7.5)	21	N18	2250	3750	
102	ZT	N12	2550	4250	
(8.5)		N18	2550	4250	
120	ZT -	N18	3000	5000	
(10.0)		N24	3000	5000	
150	ZT	N18	3750	6250	
(12.5)	۷۱	N24	3750	6250	

Gas connection

Route the gas supply line within the space and roof curb with the exit through the unit's basepan. See Figures 22 and 23 for the gas piping inlet location. Typical supply piping arrangements are shown in Figures 22 and 23. All pipe nipples, fittings, and the gas cock are field supplied or may be purchased in the Ducted Systems accessory kit #1GP0405.

Apply the following gas piping recommendations.

- You must install a drip leg and a ground joint union in the gas piping.
- When required by local codes, install a manual shut-off valve outside of the unit.
- Use wrought iron or steel pipe for all gas lines. Apply pipe dope sparingly to male threads only.

AWARNING

Natural gas may contain some propane. Propane is an excellent solvent and will quickly dissolve white lead and most standard commercial compounds. A special pipe dope must be used when assembling wrought iron or steel pipe. Shellac based compounds such as Gaskolac or Stalastic, and compounds such as Rectorseal #5, Clydes's or John Crane may be used.

- Clean all piping of dirt and scale. Hammer on the outside of the pipe and blow out loose particles. Before initial start-up, make sure that all gas lines external to the unit are purged of air.
- The gas supply must be a separate line and installed in accordance with all safety codes as prescribed under Limitations.

- You must install a 1/8-inch NPT plugged tapping, accessible for test gage connection, immediately upstream of the gas supply connection to the unit.
- After the gas connections are complete, open the main shut-off valve admitting normal gas pressure to the mains.
 Check all joints for leaks with soap solution or other material suitable for the purpose. Never use a flame.

AWARNING

Fire or explosion hazard

Failure to follow the safety warning exactly could result in serious injury, death, or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

A CAUTION

The furnace and its individual shut-off valve must be disconnected from the gas supply piping system during any pressure testing at pressures greater than 1/2 PSIG.

Pressures greater than 1/2 PSIG cause gas valve damage resulting in a hazardous condition. If the gas valve is subjected to a pressure greater than 1/2 PSIG, it must be replaced.

The furnace must be isolated from the gas supply piping system by closing its individual manual shut-off valve during any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 PSIG.

AWARNING

Threaded joints must be coated with a sealing compound that is resistant to the action of liquefied petroleum gases. **Do not use Teflon tape.**

LP units, tanks and piping

All gas heat units are shipped from the factory equipped for natural gas use only. The unit may be converted in the field for use with LP gas with accessory kit model numbers 1NP0454 or 1NP0455.

All LP gas equipment must conform to the safety standards of the National Fire Protection Association.

For satisfactory operation, LP gas pressure must be 10.5 inch W.C. at the unit under full load. Maintaining proper gas pressure depends on three main factors:

 The vaporization rate which depends on the temperature of the liquid and the wetted surface area of the containers.

- The proper pressure regulation. Two-stage regulation is recommended.
- The pressure drop in the lines between regulators and between the second stage regulator and the appliance.
 The pipe size required depends on the length of the pipe run and the total load of all appliances.

Complete information regarding tank sizing for vaporization, recommended regulator settings, and pipe sizing is available from most regulator manufacturers and LP gas suppliers.

AWARNING

LP gas is an excellent solvent and quickly dissolves white lead and most standard commercial compounds. A special pipe dope must be used when assembling wrought iron or steel pipe for LP. Shellac base compounds such as Gaskolac or Stalastic, and compounds such as Rectorseal #5, Clyde's, or John Crane may be used.

Check all connections for leaks when the piping is completed using a soap solution. **Never use a flame.**

AWARNING

Fire or explosion hazard

Failure to follow the safety warning exactly could result in serious injury, death, or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

Vent and combustion air

Venting slots in the heating compartment access panel remove the need for a combustion air hood. The gas heat flue exhaust is routed through the factory-installed exhaust piping with a screen. If necessary, a flue exhaust extension may be installed at the point of installation.

Options and accessories

Electric heat

Electric heaters are available as factory-installed options or field-installed accessories. Refer to the electric heat instructions for installation. These heaters mount in the heat compartment with the heating elements extending into the supply air chamber. All electric heaters are fused and intended for use with single point power supply.

Smoke detectors

AWARNING

The use of duct smoke detectors have specific limitations as established by the National Fire Protection Association. Note that duct smoke detectors are not a substitute for other fire detection systems, including the following.

- · An open area smoke detector
- · Early warning detection
- · A building's regular fire detection system.

Refer to NFPA Code 72 and Standard 90A for additional information.

The factory-installed smoke detector shuts down operation of the unit by interrupting power to the UCB when smoke is detected within its mounting compartment. The smoke detector option is available for both supply and return air configurations. Be aware that the supply air configuration has the sensor component mounted in the blower section with its control module mounted in the return air compartment.

AWARNING

Factory-installed smoke detectors may be subjected to extreme temperatures during off times due to outside air infiltration. These smoke detectors have an operational limit of -4°F to 158°F. To prevent false alarms, you must relocate smoke detectors installed in areas that could be outside this range.

AWARNING

To ensure that adequate airflow reaches the smoke detector's sensor, make sure that the holes of the sampling tube face into the air stream, and that the farend of the sampling tube is sealed with the plastic end cap.

The unit's supply airflow must be adjusted to provide a pressure differential across the smoke detector's sampling and exhaust ports of at least 0.01 inches of water and no more than 1.11 inches of water, as measured by a manometer.

You must test and maintain the detector on a regular basis according to NFPA 72 requirements. You must clean the detector at least once a year. For specific troubleshooting and maintenance procedures, refer to the smoke detector's installation instructions that accompany the unit.

Motorized outdoor damper

The motorized outdoor damper can be a factory-installed option or a field-installed accessory. If factory installed, refer to the instructions included with the outdoor air hood to complete the assembly. Field-installed motorized outdoor damper accessories include complete instructions for installation.

Economizer

The economizer can be a factory-installed option or a field-installed accessory. If factory installed, refer to the instructions included with the economizer to complete the assembly. Field-installed economizer accessories include complete instructions for installation.

There are two economizer options:

- Down flow, end return horizontal applications that include a fresh air hood and exhaust hood with barometric relief.
- Horizontal flow application (field-installed kit only) that requires the purchase of a barometric relief hood.

Note: For the down flow, end return horizontal application, you must keep the two side panels for the economizer hood tops (See Figure 18).

Power exhaust

The power exhaust can be a factory installed-option or a field-installed accessory. If factory installed, refer to the instructions included with the power exhaust to complete the assembly. Field-installed power exhaust accessories include complete instructions for installation.

The power exhaust factory-installed option is for down flow application only.

There are two field-installed power exhaust accessories:

- 1. Down flow application.
- Horizontal flow application that requires the purchase of a barometric relief hood.

Rain hood

For factory-installed options, all of the hood components, including the filters, the gasketing, and the hardware for assembling, are packaged and located between the condenser coil section and the main unit cabinet. For field-installed accessories, all parts necessary for the installation come in the accessory kit.

Factory-installed VFD (standard)

The factory-installed VFD is mounted in the blower access compartment. The drive comes wired from the factory to include both 3-phase power and control connections (run permit signal, speed reference signal, and fault signal). All required drive parameters are pre-programmed at the factory, except in the case of 208-volt applications.

For 208-volt applications, you must change the following parameters.

- Change the parameter that defines the motor nameplate voltage to a value of 208.00
- Change th parameter that defines motor-rated current to the appropriate value available on the motor's nameplate.

Refer to the enclosed drive material for instructions on changing parameter settings.

Manual bypass

An optional, factory-installed manual bypass switch is available with factory-installed VFD. The manual bypass switch is located in the blower motor access compartment. The manual bypass has the following three positions:

- Drive routes power through the VFD for modulating control of the indoor blower motor.
- Line (or bypass) routes power directly to the motor that provides full-speed motor operation and complete electrical isolation of the drive.
- **Test** routes power to the VFD but not to the motor to allow for drive programming and diagnostics.

If a drive failure occurs, the unit does not automatically switch to bypass mode. You must set the manual bypass switch to the Line position. If there is a call for the fan, the indoor blower motor runs at full-speed while in the bypass mode.

AWARNING

Before you begin any service, disconnect all power to the drive. Be aware that high voltages are present in the drive even after power is disconnected. Allow the capacitors within the drive to discharge before you begin service.

ELEMENTARY DIAGRAM

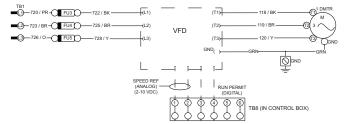


Figure 24: Simplified VFD wiring

A CAUTION

Do not connect AC power to the T1, T2, T3 drive terminals to prevent damage to the VFD.

A CAUTION

The fuses (FU3, FU4, FU5) supplied with the unit are sized according to the electrical load of the blower motor, but may not provide adequate protection to the customer-installed drive, depending upon its specifications. When a drive is selected and installed, refer to the drive manufacturer's recommendations for proper fuse sizing.

Economizer sequences

Several functions can drive the economizer, including: minimum position, free cooling, economizer loading, and minimum outdoor air supply.

Economizer minimum position sequences

The six minimum position sequences are minimum position, VAV economizer minimum position reset, fixed variable, low ambient minimum position, air monitoring station reset, and demand ventilation.

Minimum position

When the control is in the occupied mode and the FAN output is energized, the economizer is positioned to the minimum position setpoint unless another economizer function commands it open or closed. When the control is in the unoccupied mode, there is no minimum position.

VAV economizer minimum position reset

When the control is in the occupied mode and the FAN output energizes and the VFD output reaches the high-fan speed setting, the economizer damper position is the economizer minimum position setpoint.

When the VFD output reaches then fan low-speed setting, the economizer damper position is the economizer damper minimum position low speed fan.

When the VFD output is between the fan high speed and fan low speed settings, the economizer damper is position proportionally between the economizer minimum position setpoint and the economizer damper minimum position low speed fan.

Note: To disable the VAV economizer minimum position reset, set the economizer minimum position setpoint and the economizer damper minimum position low speed fan to the same value.

Fixed variable

When the control is in the occupied mode and the FAN output energizes and the VFD output reaches 100%, the economizer damper position is the economizer minimum position setpoint.

When the VFD output reaches the lowest percent command of the parameters above, the economizer damper position is the economizer damper minimum position low speed fan.

When the VFD output is between 100% and the lowest percent command, the economizer damper is positioned proportionally between the economizer minimum position setpoint and the economizer damper minimum position low speed fan.

Note: To disable the fixed variable economizer minimum position reset, set the economizer minimum position setpoint and the economizer damper minimum position low speed fan to the same value.

Low ambient minimum position

The low ambient economizer minimum position overrides all other minimum position functions.

When the control is in the occupied mode, the FAN output is energized, and the operational OAT is below the low ambient economizer setpoint, the economizer is positioned to the low ambient economizer minimum position. When the Operational OAT is equal to or above the low ambient economizer setpoint, it exits the low ambient economizer setpoint mode.

Air monitoring station reset

The input for air monitoring station reset is Fr-Air.

The fresh air max sensor range must match the range of the air monitoring station on the unit.

When the fresh air intake value falls below the fresh air intake setpoint the economizer damper position increases above minimum position until the fresh air intake value equals the fresh air intake setpoint +/- 40 CFM.

When the fresh air intake value rises above fresh air intake setpoint the economizer damper position decreases until the fresh air intake value equals the fresh air intake setpoint or it reaches minimum position setpoint.

Note: The low ambient minimum position may force the damper position below the current setpoint and disables the air monitoring station reset.

Demand ventilation

The output for demand ventilation is 2 to 10 VDC from the ECON terminal to the economizer actuator.

The control must be in occupied status with the indoor fan operating. If the low ambient minimum position is in effect, it overrides the demand ventilation operation.

If the demand ventilation mode of operation is set to enabled and the operational indoor CO₂ level is greater than the demand ventilation setpoint +100 ppm, the current operating minimum position increases as follows.

- With a CO₂ level between the demand ventilation setpoint +101 ppm and +200 ppm, the operating minimum position increases 1% per minute.
- With a CO₂ level greater than the demand ventilation setpoint +200 ppm, the operating minimum position increases 2% per minute.

When the ${\rm CO}_2$ levels drop to equivalent values below the demand ventilation setpoint, the current operating minimum position decreases at the same rates.

While in a demand ventilation mode, if the supply air temperature drops below 49°F, the economizer outside air dampers close until the supply air temperature rises above 49°F but does not go below the current economizer operating minimum position. The economizer then modulates to control the supply air temperature at 50°F.

Note: The exception to this rule occurs when hydronic heat enable and SAT tempering with hydronic heat enable (40°F default) are both on. Hydronic heat is used to control the supply air temperature in this situation and the hydronic heat tempering setpoint is above 45°F.

If differential AQ enable is on and the OAQ is greater than or equal to the IAQ by more than the demand ventilation differential setpoint, the outside air dampers close completely and override all other minimum position functions.

Free cooling changeover options

Four types of free cooling selection options are available: dry bulb temperature, single enthalpy, dual enthalpy, and auto.

Auto

The control determines the type of free cooling changeover based on which sensors are present and reliable. Conditions include the following items:

- Operational space temperature and operational outdoor temperature = dry bulb changeover
- Operational space temperature, operational outdoor temperature, and operational outdoor humidity = single enthalpy
- Operational space temperature, operational outdoor temperature, operational outdoor humidity, and operational space humidity = dual enthalpy
- If the operational outdoor air temperature value is unreliable, free cooling is not available.

Dual enthalpy

The control determines the type of free cooling changeover based on which sensors are present and reliable. Conditions include the following items:

- Operational space temperature and operational outdoor temperature = dry bulb changeover
- Operational space temperature, operational outdoor temperature and operational outdoor humidity = single enthalpy
- Operational space temperature, operational outdoor temperature, operational outdoor humidity, and operational space humidity = dual enthalpy
- If the operational outdoor air temperature value is unreliable, free cooling is not available.

Single enthalpy

The control determines the type of free cooling changeover based on which sensors are present and reliable. Conditions include the following items:

- Operational outdoor air temperature = dry bulb changeover
- Operational outdoor air temperature and outdoor air humidity = single enthalpy
- If either the operational space temperature or the outdoor air dry bulb value is unreliable, free cooling is not available.

Dry bulb

The control determines the type of free cooling changeover based on which sensors are present and reliable. Conditions include the following items:

- Return and operational outdoor air temperature = dry bulb changeover
- If either the return or outside air dry bulb value is unreliable, free cooling is not available.

Changeover methods

Dry bulb changeover

This section applies when the free cooling current mode is dry bulb.

For dry bulb economizer operation, the outside air is suitable for free cooling if the operational outdoor air temperature is 1°F below the economizer OAT enable setpoint and 1°F below the return air temperature.

Free cooling is no longer available if the operational outdoor air temperature rises above either the economizer OAT enable setpoint or the return air temperature.

Single enthalpy changeover

This section applies when the free cooling current mode is single enthalpy.

For single enthalpy economizer operation, the outdoor air is suitable for free cooling if the outdoor air enthalpy is at least 1 BTU/lb below the economizer outdoor air enthalpy setpoint and the operational outdoor air temperature is no greater than the RAT plus 9°F.

Free cooling is no longer available if the operational outdoor air temperature rises above the RAT plus 10°F or the outdoor air enthalpy rises above the economizer outside air enthalpy setpoint.

Dual enthalpy changeover

This section applies when free cooling current mode is dual enthalpy.

For dual enthalpy economizer operation, the outdoor air enthalpy must be lower than the return air enthalpy by 1 BTU/lb and the operational outdoor air temperature is no greater than the RAT plus 9°F.

Free cooling is no longer available if the operational outdoor air temperature rises above the RAT plus 10°F or the outdoor air enthalpy rises above the return air enthalpy setpoint.

CV option A thermostat sequence

When the control determines that the outdoor air is suitable, the first stage of cooling is always free cooling.

If the parameter all compressors off in free cooling is on, free cooling is used regardless of the number of cooling stages demanded.

Cooling stages set to one for single compressor unit

With a stage 1 cooling demand (Y1 input), the economizer modulates to get SAT to VAV cooling supply air temperature upper setpoint +/-5°F. If the Y1 input remains on for 20 minutes, the C1 output energizes and the economizer opens to 100%.

With stage 2 cooling demand (Y2 input) and the Y1 input has been present less than 20 minutes, then the economizer opens to 100%.

If the Y1 or Y2 has been present for more than 20 minutes, then the C1 output energizes.

Cooling stages set to two for a two compressor unit

With a stage 1 cooling demand (Y1 input), the economizer modulates to get the SAT to the VAV cooling supply air temperature upper setpoint +/-5°F.

With a stage 2 cooling demand (Y2 input), the economizer modulates to 100% and energizes one compressor output. After 20 minutes, the second compressor output energizes.

When the Y2 stage 2 cooling demand is removed, all compressor outputs are de-energized and the economizer modulates to get the SAT to the upper SAT setpoint +/-5°F.

Note: If the SAT limit for cooling enabled is turned on, the 20-minute timer reapplies when appropriate to re-energize the compressor output.

Cooling stages set to four for a four compressor unit

With a stage 1 cooling demand (Y1 input), the economizer modulates to get the SAT to the upper SAT setpoint +/-5°F.

With a stage 2 cooling demand (Y2 input), the economizer opens to 100% and the first compressor output energizes.

With a stage 3 cooling demand (Y3 input), a second compressor output energizes.

With a stage 4 cooling demand (Y4 input), a third compressor output energizes and 20 minutes after the Y4 input the fourth compressor output energizes.

When each cooling demand is removed, the compressor outputs de-energize in reverse order without time delays. When only a Y1 input remains, the economizer controls the SAT to the upper SAT setpoint +/- 5°F.

Note: If the SAT limit for cooling enabled is turned on, the 20 minute timer reapplies when appropriate to re-energize the compressor output.

CV option B thermostat sequence

Cooling stages set to one for single compressor unit

With a stage 1 cooling demand (Y1 input), the economizer modulates to get the SAT to the upper SAT setpoint +/-5°F.

If the stage 1 cooling demand (Y1 input) remains on for 20 minutes, the economizer remains at 100% for an additional 5

minutes, and the SAT is greater than the upper SAT setpoint + 5°F, the compressor output energizes.

With a stage 2 cooling demand (Y2 input), the economizer modulates to get the SAT to the lower SAT setpoint +/-5°F.

If the stage 2 cooling demand (Y2 input) remains on, the economizer remains at 100% for 5 minutes, and the SAT is greater than the lower SAT setpoint + 5°F, the compressor output energizes.

If the economizer remains at the minimum position for 5 consecutive minutes, the compressor output turns off.

Cooling stages set to two or more for multiple compressor units

With a stage 1 cooling demand (Y1 input) the economizer modulates to get the SAT to the upper SAT setpoint +/- 0.5°F.

With a stage 2 cooling demand (Y2 input), the economizer modulates to get the SAT to the lower SAT setpoint +/-.0.5°F.

If the stage 2 cooling demand (Y2 input) remains on, the economizer remains at 100% for 5 minutes and the SAT is greater than the lower SAT setpoint + 5°F, the compressor output energizes.

If the economizer position remains at 100% for another 5 minutes, the next available compressor turns on. This process repeats every 5 minutes until all the compressors energize.

If the economizer position drops below 100% and does not reach the minimum position then returns to 100% and remains at 100% for 5 minutes, the next available compressor energizes. If the economizer position remains at 100%, the process repeats every 5 minutes until all the compressors energize.

Any time the economizer remains at the minimum position for 5 consecutive minutes, the last energized compressor turns off. If it remains at the minimum position, the compressors deenergize every 5 minutes until all the compressor are off.

Y3 and Y4 inputs have no additional impact on economizer operation.

Sensor

CV option A occupied

When free cooling is available and the operating space temperature is greater than the operating cooling setpoint, the dampers modulate to control the upper SAT setpoint +/- 0.5°F.

If the economizer output is at 100% for 5 consecutive minutes and the operating space temperature is 0.6°F or greater than the operating cooling setpoint, the staged percent command starts to increase and energizes compressors.

As soon as the staged percent command begins to increase, the economizer remains at 100%. If the operating space temperature drops to less than 0.6°F above the operating

cooling setpoint, the staged percent command holds the current value.

If the operating space temperature drops 0.6°F or more below the operating cooling setpoint, the staged percent command begins to decrease.

If the staged percent command remains at 0 for 5 consecutive minutes the economizer modulates to control to the upper SAT setpoint +/-0.5°F.

CV option B occupied

When free cooling available and the operating space temperature is greater than the operating cooling setpoint, the dampers modulate to control the upper SAT setpoint +/-0.5°F.

If the economizer position remains at 100% for 5 consecutive minutes, then the dampers modulate to control to the lower SAT setpoint +/-0.5°F.

If the economizer position remains at 100% for 5 consecutive minutes and the SAT is greater than the lower SAT setpoint +5°F, the first compressor output energizes. If the economizer position remains at 100% for another 5 minutes and the SAT is greater than the lower SAT setpoint +5°F, the second compressor output energizes. This process repeats every 5 minutes until all the compressors energize.

If the economizer position drops below 100% and does not reach minimum position then returns to 100%, remains at 100% for 5 minutes, and the SAT is greater than the lower SAT setpoint +5°F, the next available compressor energizes. If the economizer position remains at 100%, the process repeats every 5 minutes until all the compressors energize.

Any time the economizer remains at the minimum position for 5 consecutive minutes or the SAT is lower than the lower SAT setpoint -5°F, the last energized compressor turns off. If it remains at the minimum position or the SAT remains lower than the lower SAT setpoint -5°F, the compressors de-energize every 5 minutes until all the compressors are off.

If all compressor outputs de-engerize, the economizer modulates to control to the upper SAT setpoint +/-0.5°F.

When the cooling demand ends the compressors de-energize immediately and the dampers return to the operating minimum position.

CV option A and option B unoccupied

If the operating space temperature is greater than the unoccupied cooling setpoint, the economizer modulates to control to the lower SAT setpoint +/-5°F.

If the operating space temperature is greater than the unoccupied cooling setpoint for 10 or more minutes, then all compressor outputs energize with a 15 minute delay.

If the operating space temperature is less than the unoccupied cooling setpoint -3°F, then all compressor outputs de-energize and the economizer closes.

VAV unit sensor option A

The operating VAV SAT setpoint is determined by the reset function not by the number of compressors operating.

When free cooling available and the SAT is above the operating VAV SAT setpoint, the dampers modulate to control the operating, upper or lower, SAT setpoint +/-0.5°F.

If the economizer output is at 100% for 5 consecutive minutes and the operating space temperature is 0.6°F or greater than the operating cooling setpoint, the control starts to energize compressors. See for additional information.

As soon as the staged percent command begins to increase, the economizer remains at 100%. If the SAT drops to less than the operating VAV SAT setpoint +1.8F, the staged percent command holds the current value.

If the SAT drops to less than the operating VAV SAT setpoint - 1.8°F, the staged percent command begins to decrease.

If the staged percent command remains at 0% for 5 consecutive minutes, the economizer modulates to control to the upper SAT setpoint +/-0.5°F.

VAV unit sensor option B

When free cooling available and the SAT is greater than the operating VAV SAT setpoint, the dampers modulate to control the operating VAV SAT setpoint +/-0.5°F.

If the economizer position remains at 100% for 10 consecutive minutes and the SAT is greater than the operating VAV SAT setpoint +5°F, the first compressor output energizes. If the economizer position remains at 100% for another 5 minutes and the SAT is greater than the operating VAV SAT setpoint +5°F, the second compressor output energizes. If the economizer position remains at 100%, the process repeats every 5 minutes until all the compressors energize.

If the economizer position drops below 100% and does not reach the minimum position then returns to 100%, remains at 100% for 5 minutes, and the SAT is greater than the operating VAV SAT setpoint +5°F, the next available compressor energizes. If the economizer position remains at 100%, the process repeats every 5 minutes until all the compressors energize.

Any time the economizer remains at the minimum position for 5 consecutive minutes or the SAT is lower than the operating VAV SAT setpoint -5°F, the last energized compressor turns off. If it remains at the minimum position or the SAT remains lower than the operating VAV SAT setpoint -5°F, the compressors de-energize every 5 minutes until all the compressors are off.

If all compressor outputs de-engerize, the economizer modulates to control to operating VAV SAT Setpoint +/-0.5°F.

When the cooling demand ends the compressors de-energize immediately and the dampers return to operating minimum position.

Economizer loading

The economizer loading function only works when only one compressor is operating.

If the SAT is less than the SAT low limit setpoint and the operating OAT is greater than 60°F, the economizer output increases to control the SAT to the operating SAT setpoint +/-0.5°F.

Power exhaust

Setpoints

Economizer enable	ON
Power exhaust enable	ON
 Modulating power exhaust 	OFF
 Exhaust VFD installed 	OFF
Building pressure sensor enabled	OFF
• Econo damper position for exh fan	ON Percent
• Econo damper position for exh fan	OFF Percent

Inputs

No inputs are present for non-modulating power exhaust.

Outputs

- 2-10 VDC from ECON on the economizer expansion module
- 24 VAC from EX-FAN to energize the exhaust fan on the economizer expansion module

Operation

Operation details include the following items:

- a. Compares the economizer output to the economizer damper position for exhaust fan on and off
- Energizes the exhaust fan when the economizer output is above the economizer damper position for exhaust fan on
- De-energizes the exhaust fan when the economizer output is below the economizer damper position for exhaust fan off

Smart Equipment™ economizer board

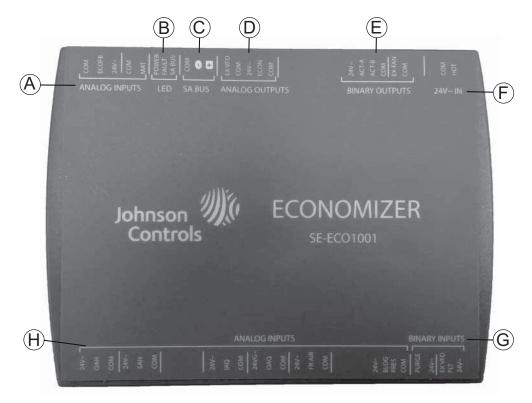


Figure 25: SE-ECO1001-0 economizer controller

The following tables describe the details of the economizer board. See Figure 25 for connection locations.

Smart Equipment™ economizer board - analog inputs

Location	Board label	Cover label	Description	Function and comments		
A	С	СОМ	24 VAC common/0-10 VDC negative for economizer actuator position feedback	Connects through circuit trace to 24V~ IN pin COM		
	IN2	ECOFB	0-10 VDC positive input from economizer actuator position feedback	The EconDampPos parameter reports input status (0-100%). Used to meet California Title 24 requirements for economizer actuator position feedback.		
	R	24V~	24 VAC hot supplied for economizer actuator position feedback	Connects through circuit trace to 24V~ IN pin HOT		
	С	COM	Mixed air temperature sensor input from 10KΩ	The MAT parameter reports input status (°F/°C), 3.65 VDC		
	IN1	MAT	@ 77°F, Type III negative temperature coefficient thermistor	reading MAT (+) to COM (-) with open circuit. Read-only use in current control revision.		
	R	24V~	24 VAC hot supplied for the outdoor air humidity sensor	Connects through circuit trace to 24V~ IN pin HOT		
	IN3	ОАН	0-10 VDC positive input from the Outdoor Air Humidity sensor	OAH parameter reports input status (0-100%H). Used in outdoor air enthalpy calculation for dual enthalpy economizer free cooling changeover.		
н	С	СОМ	24 VAC common/0-10 VDC negative for the outdoor air humidity sensor	Connects through circuit trace to 24V~ IN pin COM		
	R	24V~	24 VAC hot supplied for the supply air humidity sensor	Connects through circuit trace to 24V~ IN pin HOT		
	IN4	SAH	0-10 VDC positive input from the Supply Air Humidity sensor	SAH parameter reports input status (0-100%H). Unused in current control revision.		

Smart Equipment[™] economizer board - analog inputs (Continued)

Location	Board label	Cover label	Description	Function and comments				
	С	СОМ	24 VAC common/0-10 VDC negative for the supply air humidity sensor	Connects through circuit trace to 24V~ IN pin COM				
	R	24V~	24 VAC hot supplied for the indoor air quality sensor	Connects through circuit trace to 24V~ IN pin HOT				
	IN5	IAQ	0-10 VDC positive input from the Indoor Air Quality sensor	IAQRange parameter sets the CO2 parts per million measured by the indoor air quality sensor when it outputs 10 VDC; IAQ parameter reports input status (0-5000ppm). Used for demand ventilation functions if the NetIAQ parameter indicates ?Unrel.				
	С	СОМ	24 VAC common/0-10 VDC negative for the indoor air quality sensor	Connects through circuit trace to 24V~ IN pin COM				
	R	24V~	24 VAC hot supplied for the outdoor air quality sensor	Connects through circuit trace to 24V~ IN pin HOT				
	IN6	IN6 OAQ 0-10 VDC positive input from the Outdoor Air Quality sensor		OAQRange parameter sets the CO2 parts per million measured by the outdoor air quality sensor when it outputs 10 VDC; OAQ parameter reports input status (0-5000ppm). Used for demand ventilation function when DVent-Mode selection is Diff between IAQ and OAQ and the NetOAQ parameter indicates ?Unrel.				
н	С	СОМ	24 VAC common/0-10 VDC negative for the outdoor air quality sensor	Connects through circuit trace to 24V~ IN pin COM				
	R	24V~	24 VAC hot supplied for the air monitoring station sensor	Connects through circuit trace to 24V~ IN pin HOT				
	IN7	FR AIR	0-10 VDC positive input from the air monitoring station sensor	MOA-Range parameter sets the cubic feet per minute/liters per second measured by the air monitoring station sensor when it outputs 10 VDC; Fr Air parameter reports input status (0-50000CFM/23595lps). Used for economizer minimum position reset in speed-controlled indoor blower applications.				
	С	СОМ	24 VAC common/0-10 VDC negative for the air monitoring station sensor	Connects through circuit trace to 24V~ IN pin COM				
	R	24V~	24 VAC hot supplied for the building pressure sensor	Connects through circuit trace to 24V~ IN pin HOT				
	IN8	BLDC 0.5 VDC positive input from the Building		BldgPres parameter reports input status (250250"/w/062062kPa). Used for modulating power exhaust functions when ExFType selection is Modulating Damper or Variable Frequency Fan.				
	С	СОМ	24 VAC common/0-5 VDC negative for the building pressure sensor	Connects through circuit trace to 24V~ IN pin COM				

Smart Equipment[™] economizer board - LED details

Location	Board label	Cover label	Description	Function and comments				
	POWER	POWER	Green UCB power indicator	Lit indicates 24 VAC is present at 24V~ IN COM and HOT pins				
В	FAULT	FAULT	Red networking error and firmware error indicator	1/10th second on/off flashing indicates a networking error (polarity, addressing, etc.) or a firmware error (likely correctable with re-loading from USB flash drive)				
	SA BUS	SA BUS	transmission indicator	Lit/flickering indicates UCB-to-economizer board SA bus communication is currently active, off indicates the economize board is awaiting SA bus communication				

Smart Equipment™ economizer board - SA bus details

Location	Board label	Cover label	Description	Function and comments				
	С	СОМ	Common for SA BUS power and communication circuits	EconCtrlr parameter reports UCB-to-economizer board SA bus communication status. Negative of the SA BUS communication circuit to the UCB. Through the unit wiring harness, may continue on to the 4-stage board and/or fault detection & diagnostics board				
c¹	-	_	Communication for SA BUS devices	EconCtrlr parameter reports UCB-to-economizer board SA BUS communication status. Positive of the VDC (typically, a fluctuating 1.5 to 3.5 volts reading to C; at least 0.25 volts lower than +) SA BUS communication circuit to the UCB. Through the unit wiring harness, may continue on to the 4-stage board and/or fault detection & diagnostics board				
	+	+ + Communication for SA BUS devices		EconCtrlr parameter reports UCB-to-economizer board SA BU communication status. Positive of the VDC (typically, a fluctuating 1.5 to 3.5 volts reading to C; at least 0.25 volts high than –) SA BUS communication circuit to the UCB. Through th unit wiring harness, may continue on to the 4-stage board and/fault detection & diagnostics board				

^{1.} When wiring the unit and other devices using the SA Bus and FC Bus, see Table 32.

Smart Equipment™ economizer board - analog outputs

Location	Board label	Cover label	Description	Function and comments		
		EX VFD	2-10 VDC positive output for the modulating power Exhaust fan Variable Frequency Drive/discharge damper modulating power exhaust actuator	ExFanVFD parameter reports output status (0-100%) when ExFType selection is Variable Frequency Fan; EAD-O parameter reports output status (0-100%) when ExFType selection is Modulating Damper. Used to ramp the power exhaust fan VFD/position the discharge damper actuator.		
D	J4	СОМ	24 VAC common/0-10 VDC negative for the power exhaust variable frequency drive/ discharge damper modulating power exhaust actuator	Connects through circuit trace to 24V~ IN pin COM		
Б	J4	24V~	24 VAC hot supplied for the discharge damper modulating power exhaust actuator and economizer actuator	Connects through circuit trace to 24V~ IN pin HOT		
		ECON	2-10 VDC output for the Economizer actuator	Econ parameter reports output status (0-100%). Used to position the economizer actuator for minimum position, free cooling, demand ventilation, cooling economizer loading and purge functions		
		СОМ	24 VAC common/0-10 VDC negative for economizer actuator	Connects through circuit trace to 24V~ IN pin COM		

Smart Equipment™ economizer board - binary outputs

Location	Board label	Cover label	Description	Function and comments			
		24V~	24 VAC hot supplied for an incremental (floating control) economizer actuator	Connects through circuit trace to 24V~ IN pin HOT			
		ACT-A	24 VAC hot outputs to position an incremental (floating control) economizer actuator	Unused in current control revision			
			24 VAC return	Unused in current control revision			
E	J3		24 VAC common for an incremental (floating control) economizer actuator	Connects through circuit trace to 24V~ IN pin COM			
			24 VAC hot output to energize power exhaust fan contactor coil/VFD enable relay coil	ExFan parameter reports output status (Off-On) when ExFType selection is Non-Modulating, Modulating Damper or Variable Frequency Fan. Used to turn on/enable the power exhaust fan motor.			
		СОМ	24 VAC common/0-10 VDC negative for economizer actuator	Connects through circuit trace to 24V~ IN pin COM			

Smart Equipment™ economizer board - 24V~ IN connections

Location	Board label	Cover label	Description	Function and comments				
F	С	СОМ	124 VAC transformer Common referenced to	24 VAC common connection to power the economizer board. Connects through circuit traces to C/COM terminals and pins distributed on the economizer board.				
F	R	НОТ	24 VAC transformer HOT	24 VAC hot connection to power the economizer board. Connects through circuit traces to R/24V~ terminals and pins distributed on the economizer board.				

Smart Equipment™ economizer board - binary inputs

Location	Board label	Cover label	Description	Function and comments				
	IN9	PURGE	24 VAC hot input from the PURGE dry contact	Purge parameter reports input status (False with 0 VAC input- True with 24 VAC input). When Purge status is True, heating and cooling operation is prevented, the indoor blower and power exhaust fan operate, the economizer actuator is positioned to 100%.				
		24V~	24 VAC hot supplied for the purge dry contact	Connects through circuit trace to 24V~ IN pin HOT				
G	IN10	EX VFD FLT	24 VAC hot input from the power Exhaust Variable Frequency Drive Fault contact	ExFanVFDFIt parameter reports input status (Normal with 0 VAC input-Alarm with 24 VAC input) when ExFType selection is Variable Frequency Fan. When ExFanVFDFIt status is Alarm, EX-FAN fan output is prevented.				
		24V~	24 VAC hot supplied for the power exhaust variable frequency drive fault contact	Connects through circuit trace to 24V~ IN pin HOT				

Indoor air quality

Indoor air quality (IAQ) is regulated by an indoor sensor input. The IAQ sensor is connected to the economizer board through the IAQ analog input terminal and the associated COM and 24V~ inputs on the economizer board. Terminal IAQ accepts a 0 to +10 VDC signal with respect to the IAQ terminal. When the signal is below its setpoint, the actuator is allowed to modulate normally in accordance with the enthalpy and mixed air sensor inputs. When the IAQ signal exceeds its setpoint setting and there is no call for free cooling, the actuator is proportionately modulated from the 0 to 10 VDC signal, with 0 VDC

corresponding to full closed and 10 VDC corresponding to full open. When there is no call for free cooling, the damper position is limited by the IAQ max. damper position setting. When the signal exceeds its setpoint (demand control ventilation setpoint) setting and there is a call for free cooling, the actuator modulates from the minimum position to the full open position based on the highest call from either the mixed air sensor input or the IAQ voltage input.

- Optional CO² space sensor kit part no. 2AQ04700524
- Optional CO² sensor kit part no. 2AQ04700624

Phasing

Predator[®] units are properly phased at the factory. Check for proper compressor rotation. If the blower or compressors rotate in the wrong direction at start-up, the electrical connection to the unit is misphased. Change the phasing of the field line connection at the factory or field supplied disconnect to obtain proper rotation. Scroll compressors operate in only one direction. The scroll is misphased if it is drawing low amperage, has similar suction and discharge pressures, or it produces a high noise level.

A CAUTION

Scroll compressors require proper rotation to operate correctly. Units are properly phased at the factory. Do not change the internal wiring to make the blower condenser fans or compressor rotate correctly.

Blower rotation

Check for proper supply air blower rotation. If the blower is rotating backwards, the line voltage at the unit point of power connection is misphased. See *Phasing* on page 48.

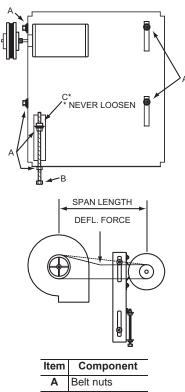
Table 17: Supply air limitations

Unit Size (Ton)	Minimum	Maximum
078 (6.50)	1950	3250
090 (7.5)	2250	3750
102 (8.5)	2550	4250
120 (10.0)	3000	5000
150 (12.5)	3750	6250

Adjusting the belt tension

To adjust the belt tension complete the following steps.

 Loosen the six belts nuts at the top and bottom. See Figure 26


Note: Never loosen the static nut at the top of the adjustment bolt.

- 2. Turn the adjustment bolt.
- Use a belt tension checker to apply a perpendicular force to one belt at the midpoint of the span shown in Figure 26.
 A deflection distance of 4 mm (5/32 in.) is obtained.
- To determine the deflection distance from normal position, use a straight edge from sheave to sheave as a reference line.

The recommended deflection force is as follows:

Tension new belts at the max. deflection force recommended for the belt section.

Re-tighten the belt nuts.

Item	Component
Α	Belt nuts
В	Adjustment bolt
С	Static nut

Figure 26: Belt adjustment

Check the belt tension at least two times during the first 24 hours of operation. Any retensioning must fall between the min. and max. deflection force values.

CFM static pressure and power-altitude and temperature corrections

Use the information below to assist in the application of the product at altitudes at or exceeding 1000 feet above sea level.

The air flow rates listed in the standard blower performance tables are based on standard air at sea level. As the altitude or temperature increases, the density of air decreases. In order to use the indoor blower tables for high altitude applications, certain corrections are necessary.

A centrifugal fan is a constant volume device. This means that, if the RPM remains constant, the CFM delivered is the same regardless of the density of the air. However, since the air at high altitude is less dense, less static pressure is generated and less power is required than a similar application at sea level. Air density correction factors are shown in Table 18 and Figure 27.

Table 18: Altitude/temperature correction factors

Air temp.						Altitude (ft.)					
All tellip.	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
40	1.060	1.022	0.986	0.950	0.916	0.882	0.849	0.818	0.788	0.758	0.729
50	1.039	1.002	0.966	0.931	0.898	0.864	0.832	0.802	0.772	0.743	0.715
60	1.019	0.982	0.948	0.913	0.880	0.848	0.816	0.787	0.757	0.729	0.701
70	1.000	0.964	0.930	0.896	0.864	0.832	0.801	0.772	0.743	0.715	0.688
80	0.982	0.947	0.913	0.880	0.848	0.817	0.787	0.758	0.730	0.702	0.676
90	0.964	0.929	0.897	0.864	0.833	0.802	0.772	0.744	0.716	0.689	0.663
100	0.946	0.912	0.880	0.848	0.817	0.787	0.758	0.730	0.703	0.676	0.651

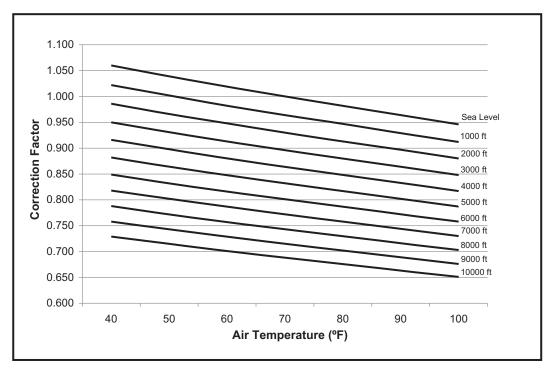


Figure 27: Altitude/temperature correction factors

Use the examples below to assist in determining the airflow performance of the product at altitude.

Example 1: What are the corrected CFM, static pressure, and BHP at an elevation of 5,000 ft. if the blower performance data is 1,400 CFM, 0.6 IWC and 0.67 BHP?

Solution: At an elevation of 5,000 ft. the indoor blower will still deliver 1,400 CFM if the RPM is unchanged. However, you must use Table 19 to determine the static pressure and BHP. We assume an air temperature of 70°F because no temperature data is given, Table 18 shows the correction factor to be 0.832.

Corrected static pressure = 0.6 x 0.832 = 0.499 IWC

Corrected BHP = $0.67 \times 0.832 = 0.56$

Example 2: A system, located at 5,000 feet of elevation, is to deliver 1,400 CFM at a static pressure of 1.5 in. Use the unit

blower tables to select the blower speed and the BHP requirement.

Solution: As in the example above, no temperature information is given so 70°F is assumed.

The 1.5 in. static pressure given is at an elevation of 5,000 ft. The first step is to convert this static pressure to equivalent sea level conditions.

Sea level static pressure = 0.6 / .832 = 0.72 in.

Enter the blower table at 1,400 sCFM and static pressure of 0.72 in. The RPM listed is the same RPM needed at 5,000 ft.

Suppose that the corresponding BHP listed in the table is 0.7. This value must be corrected for elevation.

BHP at 5,000 ft. = $0.7 \times .832 = 0.58$

Drive selection

- 1. Determine side or bottom supply duct application.
- 2. Determine desired airflow.
- 3. Calculate or measure the amount of external static pressure.
- 4. With the operating point determined from steps 1, 2, and 3, locate this point on the appropriate supply air blower performance table. Linear interpolation may be necessary.
- 5. Note the RPM and BHP from step 4 and locate the appropriate motor and/or drive.
- 6. Review the BHP compared to the motor options available. Select the appropriate motor and/or drive.
- 7. Review the RPM range for the motor options available. Select the appropriate drive if multiple drives are available for the chosen motor.
- 8. Determine the turns open to obtain the desired operation point.

Example

- 1. 2400 CFM
- 2. 1.6 IWC
- 3. Using the supply air blower performance table below, the following data point was located: 1230 RPM and 1.62 BHP.
- 4. Using the RPM selection table below, Size X and Model Y is found.
- 5. 1.62 BHP exceeds the maximum continuous BHP rating of the 1.5 HP motor. The 2 HP motor is required.
- 6. 1230 RPM is within the range of the 2 HP drives.
- 7. Using the 2 HP motor and drive, .5 turns open achieves 1230 RPM.

Example supply air blower performance

A:u fla							-	Availat	ole exte	ernal s	tatic p	ressur	e - IWG	;						
Air flow (CFM)	0.	2	0.	4	0.	.6	0.	.8	1.	0	1.	.2	1.	.4	1.	.6	1.	8	2.	.0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
	1.5 HP	RPM BHP RPM BI .5 HP & Field Supplied D D 759 0.65 819 0.						Stan	dard 1.5	HP & [Drive				Hi S	Static 2	HP & Dr	ive		
2100	759	0.65	819	0.77	881	0.87	943	0.98	1005	1.08	1065	1.18	1121	1.28	1172	1.38	1217	1.48	1254	1.59
2200	778	0.73	838	0.84	900	1.95	962	1.05	1024	1.15	1083	1.25	1139	1.35	1191	1.45	1236	1.56	1273	1.66
2300	797	0.81	857	0.92	919	1.03	981	1.13	1043	1.23	1103	1.33	1159	1.43	1210	1.53	1255	1.64	1292	1.74
2400	817	1.90	877	1.01	939	1 12	1002	1.22	1063	1.32	1123	1.42	1179	1.52	1230	1 62	1275	1.73	1312	1.83

Table X: RPM selection

Size (tons)	Model	HP	Max BHP	Motor sheave	Blower sheave	6 turns open	5 turns open	4 turns open	3 turns open	2 turns open	1 turn open	Fully closed
	V	1.5	1.73	1VL40	AK61	N/A	787	847	908	968	1029	1089
^	ī	2	2.30	1VP56	AK74	N/A	1035	1084	1134	1183	1232	1281

Airflow performance

Table 19: Airflow performance - side duct application ZT078 (6.5 Ton) side duct

A:u fla							Δ	vailab	le exte	rnal st	atic pr	essure	e - IWG	1						
Air flow (CFM)	0.	.2	0	.4	0.	.6	0.	.8	1.	.0	1.	.2	1.	.4	1.	.6	1.	.8	2	.0
(CITIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld supp	olied driv	ve			Stand	dard 1.5	HP and	drive			High	static 2	HP and	drive				
1800	557	0.27	626	0.53	686	0.75	742	0.94	801	1.10	867	1.25	946	1.40	1045	1.56	1167	1.74	1320	1.94
2000	566	0.36	635	0.62	695	0.84	752	1.02	810	1.19	876	1.34	956	1.49	1054	1.65	1177	1.82	1330	2.03
2200	578	0.46	647	0.72	707	0.93	763	1.12	822	1.28	888	1.44	968	1.59	1066	1.74	1189	1.92	1342	2.12
2400	592	0.57	661	0.83	721	1.04	777	1.23	836	1.39	902	1.55	981	1.70	1080	1.85	1203	2.03	1356	2.23
2600	608	0.69	677	0.95	737	1.17	793	1.35	851	1.52	918	1.67	997	1.82	1096	1.98	1218	2.15	1371	2.36
2800	625	0.82	694	1.08	754	1.30	811	1.49	869	1.65	935	1.80	1015	1.95	1113	2.11	1236	2.28	1389	2.49
3000	645	0.96	714	1.23	773	1.44	830	1.63	888	1.79	955	1.94	1034	2.09	1132	2.25	1255	2.43	-	-
3200	666	1.12	735	1.38	794	1.60	851	1.78	909	1.95	976	2.10	1055	2.25	1153	2.40	-	-	-	-
3400	688	1.28	757	1.54	817	1.76	873	1.94	932	2.11	998	2.26	1078	2.41	1176	2.57	-	-	-	-
																2 HP a	and field	supplie	d drive	

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT090 (7.5 Ton) side duct

Air flow							Α	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
(CFM)	0.	.2	0.	.4	0.	6	0.	.8	1.	0	1.	2	1.	.4	1.	.6	1.	.8	2.	.0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld supp	olied driv	/e				Stand	lard 1.5	HP and	drive					High	static 3	HP and	drive	
2000	620	0.28	680	0.51	737	0.71	791	0.90	844	1.07	897	1.23	952	1.39	1010	1.56	1073	1.74	1142	1.94
2200	626	0.38	686	0.60	743	0.81	797	0.99	850	1.16	903	1.32	958	1.49	1016	1.65	1079	1.83	1148	2.03
2400	632	0.49	693	0.71	750	0.92	804	1.10	856	1.27	910	1.43	964	1.59	1023	1.76	1085	1.94	1154	2.14
2600	640	0.61	701	0.84	758	1.04	812	1.22	864	1.39	917	1.56	972	1.72	1030	1.89	1093	2.07	1162	2.27
2800	650	0.75	711	0.98	767	1.18	821	1.36	874	1.53	927	1.70	982	1.86	1040	2.03	1103	2.21	1172	2.40
3000	662	0.90	723	1.13	779	1.33	833	1.51	886	1.68	939	1.85	994	2.01	1052	2.18	1115	2.36	1184	2.56
3200	677	1.07	737	1.29	794	1.50	848	1.68	901	1.85	954	2.01	1009	2.18	1067	2.34	1130	2.52	1199	2.72
3400	694	1.24	754	1.47	811	1.67	865	1.86	918	2.03	971	2.19	1026	2.35	1084	2.52	1147	2.70	1216	2.90
3600	713	1.43	774	1.66	831	1.86	885	2.05	937	2.22	991	2.38	1045	2.54	1104	2.71	1166	2.89	1235	3.09
3800	736	1.63	796	1.86	853	2.06	907	2.24	960	2.41	1013	2.58	1068	2.74	1126	2.91	1189	3.09	1258	3.29

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT102 (8.5 Ton) side duct

A ! fl							Α	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
Air flow (CFM)	0.	2	0.	.4	0.	6	0.	.8	1.	.0	1.	2	1.	4	1.	6	1.	.8	2	.0
(01 141)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld supp	olied driv	/e			Stan	dard 2 l	HP and	drive	1			High	static 3	HP and	drive			
2200	610	0.39	668	0.66	724	0.87	780	1.05	835	1.21	891	1.35	948	1.49	1009	1.65	1074	1.83	1143	2.05
2400	619	0.49	677	0.76	734	0.98	789	1.16	844	1.31	900	1.46	958	1.60	1018	1.76	1083	1.94	1153	2.16
2600	631	0.61	689	0.88	745	1.10	801	1.28	856	1.43	911	1.58	969	1.72	1030	1.87	1095	2.06	1164	2.28
2800	644	0.74	703	1.01	759	1.23	814	1.41	869	1.56	925	1.71	983	1.85	1044	2.01	1109	2.19	1178	2.41
3000	661	0.89	719	1.16	775	1.38	831	1.56	886	1.71	941	1.85	999	1.99	1060	2.15	1125	2.33	1194	2.55
3200	679	1.05	737	1.32	793	1.53	849	1.71	904	1.87	959	2.01	1017	2.15	1078	2.31	1143	2.49	1212	2.71
3400	698	1.22	757	1.49	813	1.71	868	1.88	923	2.04	979	2.18	1037	2.32	1098	2.48	1162	2.66	1232	2.88
3600	720	1.40	778	1.67	835	1.89	890	2.07	945	2.22	1001	2.37	1059	2.51	1119	2.66	1184	2.85	1254	3.07
3800	743	1.60	802	1.87	858	2.08	913	2.26	968	2.42	1024	2.56	1082	2.70	1143	2.86	1207	3.04	1277	3.26
4000	768	1.81	826	2.07	883	2.29	938	2.47	993	2.63	1049	2.77	1106	2.91	1167	3.07	1232	3.25	-	-
4200	794	2.03	852	2.29	909	2.51	964	2.69	1019	2.85	1075	2.99	1133	3.13	1193	3.29	-	-	-	-
													3 HP & field supplied drive						•	

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT120 (10 Ton) side duct

4: 6							Δ	vailab	le exte	rnal st	atic pr	essure	- IWG	_i 1						
Air flow (CFM)	0.	.2	0.	.4	0.	.6	0.	.8	1.	.0	1.	.2	1.	.4	1.	.6	1.	.8	2.	.0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		Fi	eld supp	olied dri	ve			Stan	dard 2 I	HP and	drive			High	static 3	HP and	drive			
2600	647	0.61	702	0.85	755	1.06	808	1.24	860	1.41	914	1.57	970	1.73	1028	1.90	1091	2.07	1159	2.27
2800	657	0.75	713	0.99	766	1.20	819	1.38	871	1.55	925	1.71	981	1.87	1039	2.04	1102	2.21	1170	2.41
3000	671	0.90	726	1.14	780	1.35	832	1.53	885	1.70	938	1.86	994	2.02	1053	2.19	1116	2.36	1183	2.56
3200	687	1.06	742	1.30	795	1.51	848	1.70	901	1.87	954	2.03	1010	2.19	1069	2.35	1132	2.53	1199	2.72
3400	705	1.24	760	1.48	814	1.69	866	1.87	919	2.04	973	2.20	1028	2.36	1087	2.53	1150	2.70	1218	2.90
3600	726	1.42	781	1.66	835	1.87	887	2.06	940	2.23	993	2.39	1049	2.55	1108	2.71	1171	2.89	1239	3.09
3800	749	1.62	805	1.86	858	2.07	910	2.26	963	2.43	1017	2.59	1072	2.75	1131	2.91	1194	3.09	1262	3.28
4000	775	1.83	830	2.07	883	2.28	936	2.46	989	2.63	1042	2.79	1098	2.95	1157	3.12	1220	3.29	1287	3.49
4200	803	2.04	858	2.28	911	2.49	964	2.68	1016	2.85	1070	3.01	1126	3.17	1185	3.33	1247	3.51	-	-
4400	833	2.27	888	2.51	941	2.72	994	2.90	1046	3.07	1100	3.24	1156	3.39	-	-	-	-	-	-
4600	865	2.50	920	2.74	973	2.95	1026	3.14	1078	3.31	-	-	-	-	-	-	-	-	-	-
													3 HP and field				supplie	d drive	•	

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT150 (12.5 Ton) side duct

Air flow							Α	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
(CFM)	0.	2	0.	.4	0.	6	0.	.8	1.	.0	1.	2	1.	4	1.	.6	1.	.8	2.	.0
(01 111)	RPM	BHP		BHP			RPM	BHP	RPM	BHP	RPM		RPM			BHP	RPM	BHP	RPM	BHP
			ı		olied driv		İ				i		dard 3 F		l		İ			
3200	736	0.44	774	0.79	816	1.12	861	1.41	910	1.68	960	1.92	1012	2.15	1065	2.36	1118	2.57	1171	2.77
3400	751	0.64	789	1.00	831	1.32	877	1.61	925	1.88	975	2.13	1027	2.35	1080	2.57	1133	2.77	1186	2.98
3600	768	0.87	806	1.22	848	1.55	894	1.84	942	2.11	992	2.35	1044	2.58	1097	2.79	1150	3.00	1203	3.20
3800	787	1.11	825	1.47	867	1.79	913	2.09	961	2.35	1011	2.60	1063	2.83	1116	3.04	1169	3.25	1222	3.45
4000	808	1.38	846	1.74	888	2.06	933	2.35	982	2.62	1032	2.86	1084	3.09	1137	3.31	1190	3.51	1242	3.71
4200	830	1.67	868	2.03	910	2.35	956	2.64	1004	2.91	1054	3.15	1106	3.38	1159	3.59	1212	3.80	1265	4.00
4400	854	1.98	892	2.33	934	2.66	980	2.95	1028	3.21	1078	3.46	1130	3.69	1183	3.90	1236	4.11	1289	4.31
4600	880	2.30	918	2.66	960	2.98	1005	3.28	1053	3.54	1104	3.79	1156	4.01	1209	4.23	1262	4.43	1314	4.64
4800	907	2.65	945	3.01	987	3.33	1032	3.62	1081	3.89	1131	4.13	1183	4.36	1236	4.58	1289	4.78	1341	4.98
5000	935	3.01	973	3.37	1015	3.69	1061	3.99	1109	4.25	1160	4.50	1212	4.73	1264	4.94	1317	5.15	1370	5.35
5200	965	3.40	1003	3.75	1045	4.08	1091	4.37	1139	4.64	1190	4.88	1242	5.11	1294	5.32	1347	5.53	1400	5.73
5400	996	3.80	1034	4.16	1076	4.48	1122	4.77	1170	5.04	1221	5.28	1273	5.51	1326	5.72	-	-	-	-
5600	1029	4.22	1067	4.57	1109	4.90	1155	5.19	1203	5.46	1253	5.70	-	-	-	-	-	-	-	-
5800	1063	4.65	1101	5.01	1143	5.33	1188	5.62	-	-	-	-	-	-	-	-	-	-	-	-
6000	1098	5.10	1136	5.46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6200	1134	5.57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	High static 5 HP and drive									•		•	'		5 HP a	and field	supplie	d drive		

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

Table 20: Airflow performance - bottom duct application

ZT078 (6.5 Ton) bottom duct

A in flam							Δ	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
Air flow (CFM)	0.	2	0.	.4	0.	.6	0.	.8	1.	0	1.	2	1.	4	1.	.6	1.	.8	2.	.0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld supp	olied driv	/e		Stand	dard 1.5	HP and	drive				_	High	static 2	HP and	drive		_	
1800	580	0.29	652	0.49	722	0.70	791	0.90	855	1.09	917	1.27	973	1.44	1024	1.58	1069	1.70	1108	1.79
2000	599	0.41	671	0.61	741	0.81	809	1.02	874	1.21	935	1.39	992	1.56	1043	1.70	1088	1.82	1127	1.90
2200	618	0.53	690	0.74	760	0.94	829	1.14	894	1.34	955	1.52	1011	1.68	1062	1.83	1108	1.94	1146	2.03
2400	639	0.67	711	0.87	781	1.08	849	1.28	914	1.47	975	1.66	1032	1.82	1083	1.96	1128	2.08	1166	2.17
2600	661	0.82	733	1.02	803	1.23	871	1.43	936	1.62	998	1.80	1054	1.97	1105	2.11	1150	2.23	1189	2.32
2800	685	0.98	757	1.18	828	1.38	896	1.59	961	1.78	1022	1.96	1078	2.13	1130	2.27	1175	2.39	1213	2.47
3000	712	1.15	784	1.35	854	1.55	922	1.76	987	1.95	1048	2.13	1105	2.30	1156	2.44	1201	2.56	1240	2.64
3200	741	1.33	813	1.53	883	1.73	951	1.94	1016	2.13	1077	2.31	1134	2.48	1185	2.62	1230	2.74	1269	2.82
3400	772	1.52	844	1.72	915	1.92	983	2.13	1048	2.32	1109	2.50	1165	2.67	1216	2.81	1262	2.93	1300	3.01
															2 HP a	and field	supplie	d drive		

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT090 (7.5 Ton) bottom duct

A in flam							Δ	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
Air flow (CFM)	0.	.2	0	.4	0.	.6	0.	.8	1.	.0	1.	.2	1.	4	1.	.6	1.	.8	2	.0
(01 141)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld sup	olied driv	ve		Stan	idard 2 F	HP and	drive					High	static 3	HP and	drive			
2000	647	0.50	702	0.69	760	0.86	820	1.00	880	1.15	939	1.29	997	1.45	1053	1.64	1104	1.85	1151	2.11
2200	659	0.63	715	0.82	772	0.98	832	1.13	892	1.27	952	1.42	1010	1.58	1065	1.76	1117	1.98	1163	2.23
2400	675	0.76	730	0.95	788	1.12	847	1.26	907	1.41	967	1.55	1025	1.71	1081	1.90	1132	2.11	1179	2.37
2600	694	0.91	749	1.10	807	1.27	866	1.41	926	1.56	986	1.70	1044	1.86	1100	2.05	1151	2.26	1198	2.52
2800	717	1.08	772	1.26	830	1.43	889	1.58	949	1.72	1009	1.87	1067	2.03	1122	2.21	1174	2.42	1221	2.68
3000	744	1.25	799	1.44	857	1.60	916	1.75	976	1.89	1036	2.04	1094	2.20	1149	2.38	1201	2.60	1248	2.86
3200	775	1.43	830	1.62	888	1.78	947	1.93	1008	2.07	1067	2.22	1125	2.38	1181	2.56	1232	2.78	1279	3.04
3400	810	1.62	865	1.81	923	1.98	983	2.12	1043	2.27	1102	2.41	1160	2.57	1216	2.76	1267	2.97	1314	3.23
3600	849	1.83	905	2.01	962	2.18	1022	2.33	1082	2.47	1142	2.62	1200	2.78	1255	2.96	1307	3.18	1353	3.43
3800	893	2.04	948	2.23	1006	2.39	1065	2.54	1125	2.68	1185	2.83	1243	2.99	1299	3.17	1350	3.39	1397	3.64
		393 2.04 948 2.2			<u> </u>						-		3 HP a	nd field	supplie	d drive				

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT102 (8.5 Ton) bottom duct

A in flam							Δ	vailab	le exte	rnal st	atic pr	essure	e - IWG	1						
Air flow (CFM)	0.	.2	0.	.4	0.	.6	0.	.8	1.	.0	1.	.2	1.	4	1.	6	1.	.8	2.	.0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld supp	olied driv	/e		Stan	idard 2 F	HP and	drive					High	static 3	HP and	drive			
2200	686	0.77	732	0.90	782	1.04	837	1.17	895	1.30	953	1.42	1011	1.53	1067	1.63	1120	1.72	1169	1.80
2400	703	0.88	749	1.02	800	1.15	854	1.28	912	1.41	970	1.53	1028	1.64	1084	1.74	1138	1.83	1186	1.91
2600	722	1.00	768	1.14	819	1.28	873	1.41	931	1.53	989	1.65	1047	1.77	1104	1.87	1157	1.96	1205	2.04
2800	744	1.14	789	1.28	840	1.42	895	1.55	952	1.67	1011	1.79	1069	1.91	1125	2.01	1178	2.10	1227	2.18
3000	767	1.30	813	1.43	863	1.57	918	1.70	976	1.83	1034	1.95	1092	2.06	1148	2.16	1202	2.25	1250	2.33
3200	793	1.47	838	1.60	889	1.74	944	1.87	1002	2.00	1060	2.12	1118	2.23	1174	2.33	1227	2.42	1276	2.50
3400	821	1.65	867	1.79	918	1.92	972	2.05	1030	2.18	1088	2.30	1146	2.41	1203	2.52	1256	2.61	1304	2.68
3600	852	1.85	897	1.99	948	2.12	1003	2.25	1060	2.38	1119	2.50	1177	2.61	1233	2.71	1286	2.81	1335	2.88
3800	884	2.06	930	2.20	981	2.33	1036	2.46	1093	2.59	1151	2.71	1209	2.82	1266	2.93	1319	3.02	1367	3.10
4000	919	2.29	965	2.42	1016	2.56	1071	2.69	1128	2.82	1186	2.94	1244	3.05	1301	3.15	1354	3.24	1402	3.32
4200	956	2.53	1002	2.66	1053	2.80	1108	2.93	1165	3.06	1223	3.18	1282	3.29	1338	3.39	-	-	-	-
													3 HP a	nd field	supplie	d drive				

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT120 (10 Ton) bottom duct

A ! fl							Α	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
Air flow (CFM)	0.	2	0.	.4	0.	6	0.	.8	1.	.0	1.	.2	1.	4	1.	.6	1.	8	2.	.0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
•	Field su dri				Stan	dard 2 l	HP and	drive						High	static 3	HP and	drive			
2600	742	1.06	782	1.18	828	1.30	880	1.43	936	1.56	993	1.69	1050	1.80	1105	1.91	1157	1.99	1204	2.05
2800	762	1.20	802	1.32	849	1.44	901	1.57	956	1.70	1014	1.83	1071	1.94	1126	2.05	1178	2.13	1224	2.19
3000	785	1.36	825	1.47	872	1.60	924	1.73	979	1.86	1036	1.98	1093	2.10	1149	2.20	1200	2.28	1247	2.35
3200	810	1.52	850	1.64	897	1.76	949	1.89	1004	2.02	1061	2.15	1118	2.27	1173	2.37	1225	2.45	1272	2.51
3400	837	1.71	877	1.82	924	1.95	976	2.08	1031	2.21	1088	2.33	1145	2.45	1200	2.55	1252	2.63	1299	2.70
3600	866	1.90	906	2.02	953	2.14	1005	2.27	1060	2.40	1117	2.53	1174	2.64	1230	2.75	1281	2.83	1328	2.89
3800	897	2.11	937	2.23	984	2.35	1036	2.48	1091	2.61	1148	2.74	1205	2.85	1261	2.96	1313	3.04	1359	3.10
4000	930	2.34	970	2.45	1017	2.58	1069	2.70	1125	2.84	1182	2.96	1239	3.08	1294	3.18	1346	3.26	1392	3.32
4200	966	2.57	1006	2.69	1052	2.81	1104	2.94	1160	3.07	1217	3.20	1274	3.31	1329	3.42	-	-	-	-
4400	1003	2.82	1043	2.94	1089	3.06	1141	3.19	1197	3.32	1254	3.45	-	-	-	-	-	-	-	-
4600	1041	3.08	1082	3.20	1128	3.32	1180	3.45	-	-	-	-	-	-	-	-	-	-	-	-
												3 HP a	and field	supplie	d drive					

- 1. Blower performance includes gas heat exchangers and 2" filters. See STATIC RESISTANCE table for additional applications.
- 2. See RPM SELECTION table to determine desired motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

ZT150 (12.5 Ton) bottom duct

4: 6							Δ	vailab	le exte	rnal st	atic pr	essure	- IWG	1						
Air flow (CFM)	0.	2	0.	.4	0.	6	0.	.8	1.	.0	1.	2	1.	4	1.	.6	1.	.8	2.	0
(CFIVI)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Fi	eld supp	olied driv	/e			_	Stan	dard 3 l	IP and	drive		-			High	static 5	HP and	drive	
3200	829	0.96	870	1.21	914	1.46	960	1.70	1009	1.93	1059	2.15	1111	2.37	1164	2.57	1218	2.76	1273	2.93
3400	853	1.18	894	1.43	938	1.68	984	1.92	1033	2.15	1083	2.38	1135	2.59	1188	2.79	1242	2.98	1297	3.16
3600	879	1.43	920	1.68	964	1.93	1010	2.17	1059	2.40	1109	2.63	1161	2.84	1214	3.04	1268	3.23	1323	3.41
3800	907	1.70	948	1.95	992	2.20	1038	2.44	1087	2.67	1137	2.90	1189	3.11	1242	3.31	1296	3.50	1351	3.68
4000	937	1.99	978	2.25	1022	2.50	1068	2.74	1117	2.97	1167	3.19	1219	3.40	1272	3.61	1326	3.80	1381	3.97
4200	969	2.31	1010	2.57	1054	2.81	1101	3.05	1149	3.29	1200	3.51	1252	3.72	1305	3.93	1359	4.11	1413	4.29
4400	1003	2.65	1045	2.91	1089	3.16	1135	3.40	1184	3.63	1234	3.85	1286	4.06	1339	4.27	1393	4.46	1448	4.63
4600	1040	3.02	1081	3.27	1125	3.52	1171	3.76	1220	3.99	1270	4.22	1322	4.43	1375	4.63	1429	4.82	1484	5.00
4800	1078	3.41	1119	3.66	1163	3.91	1210	4.15	1258	4.38	1309	4.60	1361	4.82	1414	5.02	1468	5.21	1522	5.38
5000	1119	3.82	1160	4.07	1204	4.32	1250	4.56	1299	4.79	1349	5.01	1401	5.23	1454	5.43	1508	5.62	1563	5.79
5200	1161	4.25	1202	4.50	1246	4.75	1293	4.99	1341	5.22	1392	5.45	1443	5.66	-	-	-	-	-	-
5400	1205	4.70	1246	4.95	1290	5.20	1337	5.44	1385	5.67	-	-	-	-	-	-	-	-	-	-
5600	1251	5.17	1292	5.43	1336	5.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5800	1299	5.67	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1299 3.07														5 HP a	and field	supplie	d drive		

- 1. Blower performance includes gas heat exchangers and 2 in. filters. See the static resistance table for additional applications.
- 2. See the RPM selection table to determine the required motor sheave setting and to determine the maximum continuous BHP.
- 3. $kW = BHP \times 0.932$.

Table 21: RPM selection

Size	Model	Airflow option	HP	Max	Motor	Blower	6 turns	5 turns	4 turns	3 turns	2 turns	1 turn	Fully
(tons)	wodei	All flow option	1111	BHP	sheave	sheave	open	open	open	open	open	open	closed
078	ZT	Standard	1.5	1.725	1VL40	AK74	N/A	663	713	759	803	840	882
(6.5)	۷1	High static	2	2.3	1VM50	AK74	N/A	884	927	977	1025	1074	1121
090	ZT	Standard	1.5	1.725	1VL40	AK69	N/A	714	761	799	852	905	955
(7.5)	۷1	High static	3	3.45	1VM50	AK69	N/A	952	1002	1043	1104	1140	1202
102	ZT	Standard	2	2.3	1VM50	AK89	N/A	737	775	812	851	889	926
(8.5)	۷1	High static	3	3.45	1VM50	AK74	N/A	903	943	985	1028	1071	1113
120	ZT	Standard	2	2.3	1VM50	AK84	N/A	781	819	859	897	932	969
(10)	۷1	High static	3	3.45	1VM50	AK74	N/A	903	943	985	1028	1076	1113
150	ZT	Standard	3	3.45	1VM50	AK74	N/A	908	955	1003	1049	1094	1142
(12.5)	۷1	High static	5	5.75	1VP56	BK77	1104	1102	1157	1200	1246	1282	1328

Table 22: Indoor blower specifications

Size			Mo	tor			Mo	tor sheave		Blov	ver sheave		
(tons)	Model	HP	RPM	Eff.	SF	Frame	Datum dia. (in.)	Bore (in.)	Model	Datum dia. (in.)	Bore (in.)	Model	Belt
078	ZT	Standard	1-1/2	1725	0.8	1.15	56	2.6 - 3.6	7/8	1VL40	7.0	1	AK74
(6.5)	I	High static	2	1725	0.8	1.15	56	3.6 - 4.6	7/8	1VM50	6.0	1	AK74
090	ZT	Standard	1-1/2	1725	0.8	1.15	56	2.6 - 3.6	7/8	1VL40	7.0	1	AK69
(7.5)	۷۱	High static	3	1725	0.8	1.15	56	3.6 - 4.6	7/8	1VM50	5.7	1	AK69
102	ZT	Standard	2	1725	0.8	1.15	56	3.4 - 4.4	7/8	1VM50	9.0	1	AK89
(8.5)	۷۱	High static	3	1725	0.8	1.15	56	3.4 - 4.4	7/8	1VM50	7.0	1	AK74
120	ZT	Standard	2	1725	0.8	1.15	56	3.4 - 4.4	7/8	1VM50	8.0	1	AK84
(10)	۷۱	High static	3	1725	0.8	1.15	56	3.4 - 4.4	7/8	1VM50	7.0	1	AK74
150	ZT	Standard	3	1725	0.8	1.15	56	3.4 - 4.4	7/8	1VM50	7.0	1	AK74
(12.5)	۷1	High static	5	1725	0.87	1.15	184T	4.3 - 5.3	1-1/8	1VP56	6.7	1	BK77

Table 23: Power exhaust specifications

Model	Voltago	Motor			Unit (per circuit)			Fuse size	CFM @ 0.1 ESP	
Wiodei	odel Voltage		RPM ¹	QTY	LRA	FLA	MCA	ruse size	CFW @ 0.1 ESF	
2PE04704706	208/230-1-60	3/4	1075	1	24.9	5	6.3	10	4800	
2PE04704746	460-1-60	3/4	1075	1	N/A	2.2	2.8	5	4800	
2PE04704758	575-1-60	3/4	1050	1	N/A	1.5	1.9	4	4800	

^{1.} Motors are multi-tapped and factory wired for high speed.

Air balance

Start the supply air blower motor. Adjust the resistances in both the supply and the return air duct systems to balance the air distribution throughout the conditioned space. The job specifications may require that this balancing be done by someone other than the equipment installer.

A CAUTION

You must adjust the belt drive blower systems to the specific static and CFM requirements for the application.

The belt drive blowers are not set at the factory for any specific static or CFM. You must adjust the blower speed and belt tension.

Verify proper sheave alignment. Tighten the blower pulley and motor sheave set screws after these adjustments. Re-check the set screws after 10-12 hours of run time.

Checking air quantity

Method one

- 1. Remove the dot plugs from the duct panel.
- Insert eight-inches of 1/4 inch metal tubing into the airflow on both sides of the indoor coil.

Note: You must insert the tubes and hold them in a position perpendicular to the air flow so that velocity pressure does not affect the static pressure readings.

3. Use an inclined manometer or Magnehelic® to determine the pressure drop across a dry evaporator coil. The moisture on an evaporator coil can vary greatly, measuring the pressure drop across a wet coil under field conditions could be inaccurate. To ensure that the coil is dry, deactivate the compressors de-activated while the test is being run.

Note: De-energize the compressors before you take any test measurements to ensure that the evaporator coil is dry.

- Use the pressure drop indicated by the manometer and the graph in Figure 28 to determine the unit CFM. In order to obtain an accurate measurement, verify that the air filters are clean.
- To adjust measured CFM to required CFM, see Supply air drive adjustment on page 58.
- After you note the readings, remove the tubes and replace the dot plugs.
- Tighten the blower pulley and motor sheave set screws after any adjustments. Re-check the set screws after 10-12 hours run time.

AWARNING

Failure to properly adjust the total system air quantity can result in extensive blower damage.

Method two

- Drill two 5/16 inch holes, one in the return air duct as close to the inlet of the unit as possible, and another in the supply air duct as close to the outlet of the unit as possible.
- Using the hole drilled in step 1, insert eight inches of 1/4 inch metal tubing into the airflow of the return and supply air ducts of the unit.

Note: You must insert the tubes and hold them in a position perpendicular to the air flow so that velocity pressure does not affect the static pressure readings.

- Use an inclined manometer or Magnehelic® to determine the pressure drop across the unit. This is the external static pressure (ESP). In order to obtain an accurate measurement, verify that the air filters are clean.
- Determine the number of turns the variable motor sheave is open.
- Select the correct blower performance table for the unit from Tables 19 and 20. Tables are presented for side and bottom duct configuration.
- Determine the unit measured CFM from the blower performance table, external static pressure, and the number of turns the variable motor sheave is open.
- To adjust measured CFM to required CFM, see Supply air drive adjustment on page 58.
- After you note the reading, remove the tubes and seal the holes.
- Tighten the blower pulley and motor sheave set screws after any adjustments. Re-check the set screws after 10-12 hours run time.

Note: You must repeat this procedure with the addition of field-installed accessories.

Failure to properly adjust the total system air quantity can result in extensive blower damage.

Pressure drop across a dry indoor coil versus supply air CFM for all ZT unit tonnages

Figure 28: Dry coil delta P

Supply air drive adjustment

A CAUTION

Before you make any blower speed changes, review the installation for any installation errors, leaks, or undesirable systems effects that can result in loss of airflow.

Even small changes in blower speed can result in substantial changes in static pressure and BHP. BHP and AMP draw of the blower motor increase by the cube of the blower speed. Static pressure increases by the square of the blower speed. Only qualified personnel can make blower speed changes, strictly adhering to the fan laws.

At unit start-up, the measured CFM may be higher or lower than the required CFM. To achieve the required CFM, you may need to adjust the speed of the drive by changing the datum diameter (DD) of the variable pitch motor sheave as described below:

$$\left(\frac{1,700 \text{ CFM}}{1,400 \text{ CFM}}\right) \cdot 1.88 \text{ in.} = 2.28 \text{ in.}$$

Use the following tables and the DD calculated according to the above equation to adjust the motor variable pitch sheave.

Example

A 4 ton unit was selected to deliver 1,700 CFM with a 1.5 HP motor, but the unit is delivering 1,400 CFM. The variable pitch motor sheave is set at 3 turns open.

Use the equation to determine the required DD for the new motor sheave.

$$\left(\frac{\text{Required CFM}}{\text{Measured CFM}}\right) \cdot \text{Existing DD} = \text{New DD}$$

Use Table 24 to locate the DD nearest to 2.28 in. Close the sheave to 2 turn open.

New BHP

- = (Speed increase)³ BHP at 1,400 CFM
- = (Speed increase)³ Original BHP
- = New BHP

New motor Amps

- = (Speed increase)³ Amps at 1,400 CFM
- = (Speed increase)³ Original Amps
- = New Amps

Table 24: Motor sheave datum diameters

	1VL34x7/8 (1-1/2 HP motor)		1VL44x7/8 (1-1/2 HP motor)		L40x7/8 HP motor)	1VM50x7/8 (2 HP motor)		
Turns open	Datum diameter	Turns open	Datum diameter	Turns open	Datum diameter	Turns open	Datum diameter	
0	2.9	0	4.0	0	3.6	0	4.4	
1/2	2.8	1/2	3.9	1/2	3.5	1/2	4.3	
1	2.7	1	3.8	1	3.4	1	4.2	
1-1/2	2.6	1-1/2	3.7	1-1/2	3.3	1-1/2	4.1	
2	2.3	2	3.6	2	3.2	2	4.0	
2-1/2	2.4	2-1/2	3.5	2-1/2	3.1	2-1/2	3.9	
3	2.3	3	3.4	3	3.0	3	3.8	
3-1/2	2.2	3-1/2	3.3	3-1/2	2.9	3-1/2	3.7	
4	2.1	4	3.2	4	2.8	4	3.6	
4-1/2	2.0	4-1/2	3.1	4-1/2	2.7	4-1/2	3.5	
5	1.9	5	3.0	5	2.6	5	3.4	

A CAUTION

You must adjust the belt drive blower systems to the specific static and CFM requirements for the application.

The belt drive blowers are not set at the factory for any specific static or CFM. You must adjust the blower speed and belt tension.

Verify proper sheave alignment. Tighten the blower pulley and motor sheave set screws after these adjustments. Re-check the set screws after 10-12 hours of run time.

Additional static resistance - ZT078 through 150

Cina (tana)	Madal	CFM	Cooling only1	Reheat coil ^{2 3}	Economizer ^{2 3}	4 in Filto "2		Elec	ctric heat	kW ²	
Size (tons)	Model	CFIVI	Cooling only ¹	Reneat Con	Economizer	4 m. Filler	09	18	24	36	54
		1900	0.03	0.07	0.04	0.12	0.05	0.06	0.07	0.08	0.10
		2100	0.04	0.08	0.10	0.13	0.06	0.07	0.08	0.09	0.11
		2300	0.06	0.09	0.17	0.14	0.07	0.08	0.09	0.10	0.13
		2500	0.08	0.10	0.23	0.16	0.08	0.09	0.10	0.11	0.14
		2700	0.10	0.11	0.29	0.17	0.09	0.10	0.12	0.13	0.16
		2900	0.12	0.12	0.34	0.19	0.10	0.11	0.13	0.14	0.18
		3100	0.15	0.13	0.40	0.20	0.12	0.13	0.15	0.16	0.20
		3300	0.17	0.14	0.45	0.22	0.13	0.14	0.17	0.18	0.22
		3500	0.20	0.15	0.51	0.26	0.15	0.16	0.19	0.20	0.24
078 (6.5)		3700	0.22	0.17	0.56	0.27	0.17	0.18	0.21	0.22	0.26
090 (7.5)		3900	0.25	0.18	0.61	0.29	0.19	0.20	0.23	0.24	0.28
102 (8.5)	ZT	4100	0.28	0.19	0.66	0.32	0.21	0.22	0.25	0.26	0.31
120 (10)		4300	0.31	0.20	0.70	0.35	0.23	0.24	0.28	0.29	0.34
150 (12.5)		4500	0.34	0.21	0.75	0.38	0.25	0.26	0.30	0.31	0.37
		4700	0.38	0.22	0.79	0.41	0.28	0.29	0.33	0.34	0.40
		4900	0.41	0.24	0.83	0.44	0.30	0.31	0.35	0.37	0.43
		5100	0.45	0.25	0.87	0.47	0.33	0.34	0.38	0.40	0.46
		5300	0.48	0.26	0.91	0.51	0.35	0.37	0.41	0.43	0.49
		5500	0.52	0.27	0.95	0.55	0.38	0.40	0.44	0.46	0.53
		5700	0.56	0.28	0.98	0.58	0.41	0.43	0.47	0.49	0.56
		5900	0.60	0.30	1.02	0.62	0.44	0.46	0.50	0.53	0.59
		6100	0.64	0.31	1.05	0.67	0.47	0.49	0.53	0.56	0.62
		6300	0.69	0.32	1.08	0.71	0.50	0.53	0.56	0.59	0.65

- 1. Add these values to the available static resistance in the respective blower performance tables.
- 2. Deduct these values from the available external static pressure shown in the respective blower performance tables.
- 3. The pressure drop through the economizer is greater for 100% outdoor air than it is for 100% return air. If the resistance of the return air duct is less than 0.25 IWG, the unit delivers less CFM during full economizer operation.

Operation

Cooling operation

- A Y1 call for the first stage of cooling is passed to the unit control board (UCB). The UCB then determines whether the requested operation is available and if so, which components to energize. With a Y1 call for first stage cooling, the UCB determines if a first stage cooling output is valid as long as all safeties and time-delays allow a C1 output for cooling. The C1 relay on the UCB closes and sends 24 volts to the M1 relay. This starts compressor #1 on low and also energizes terminal block TB3-1 for cond. fan #1 and cond. fan #2 on low speed. The UCB energizes the VFD-equipped blower at the first stage speed as set in the Smart Equipment™ control.
- If a Y2 call is present, it is passed to the UCB. The UCB then determines whether the requested operation is available and if so, which components to energize. With a Y2 call for second stage cooling, the UCB determines if a second stage cooling output is valid as long as all safeties and time-delays allow a C2 output for cooling. The C2 relay on the UCB closes and sends 24 volts to the M2 relay. This starts compressor #2 on low speed and also energizes for cond. fan #3 and cond. fan #4 on low speed. The UCB energizes the VFD-equipped blower at the second stage speed as set in the Smart Equipment™ control.
- If a Y3 call is present, it is passed to the UCB. The UCB then determines whether the requested operation is available and if so, which components to energize. With a Y3 call for third stage cooling, the UCB determines if a third stage cooling output is valid as long as all safeties and time-delays allow a C3 output for cooling. The C3 relay on the UCB closes and sends 24 volts to the terminal block TB3-2 which energizes compressors #1 & #2 on high speed and also cond. fan #1, cond. fan #2, cond. fan #3, and cond. fan #4 on high speed. The UCB energizes the VFD-equipped blower at the third stage speed as set in the Smart Equipment™ control.

Free cooling operation with economizer

- With a demand for first stage cooling either from a thermostat or space sensor and the outside air is suitable for free cooling, the dampers are modulated to maintain supply air temperature to within +/- 1 degree of the free cooling SAT upper setpoint. If the output to the economizer actuator is at 10 VDC and the supply air temperature cannot be controlled to within 5 degrees of the free cooling SAT upper setpoint, one compressor is energized. The economizer is then modulated to maintain supply air temperature to within +/- 1 degree of the free cooling SAT upper setpoint.
- If a demand for second stage cooling occurs and the economizer is already modulating to maintain the supply air temperature to the cooling SAT upper setpoint, the setpoint is changed to the free cooling SAT lower setpoint. Any compressors that are energized remain energized and the economizer dampers are modulated to maintain supply air temperature to within +/- 1 degree of the cooling

- SAT lower setpoint. If the output to the economizer actuator is at 10 VDC and the supply air temperature cannot be controlled to within 5 degrees of the cooling SAT lower setpoint, compressor stage 2 is energized. The economizer is then modulated to maintain supply air temperature to within +/- 1 degree of the cooling SAT lower setpoint.
- If the output to the economizer actuator is at minimum position and the supply air temperature drops more than 5 degrees below the current economizer SAT setpoint, the highest stage compressor is de-energized as long as the minimum run time has elapsed.

Economizer with single enthalpy sensor

When the room thermostat calls for cooling, the low voltage control circuit from R to G and Y1 is completed. The UCB energizes the blower motor (if the fan switch on the room thermostat is set to AUTO position) and drives the economizer dampers from fully closed to their minimum position. If the enthalpy of the outdoor air is below the setpoint of the enthalpy controller (previously determined), Y1 energizes the economizer. The dampers modulate to maintain a constant supply air temperature as monitored by the discharge air sensor. If the outdoor air enthalpy is above the setpoint, Y1 energizes the compressor and condenser fan motor only.

When the thermostat has been satisfied, it de-energizes Y1. If the compressor has satisfied its minimum run time, the compressor and condenser fan are de-energized. Otherwise, the unit operates the cooling system until the minimum run times for the compressor are completed. After the compressor de-energizes, the blower is stopped following the elapse of the fan off delay for cooling, and the economizer damper goes to the closed position. If the unit continues fan operation, the economizer damper goes to the min. position.

Economizer with dual enthalpy sensors

The operation with the dual enthalpy sensors is identical to the single sensor except that a second enthalpy sensor is mounted in the return air. This return air sensor allows the economizer to choose between outdoor air and return air, whichever has the lowest enthalpy value, to provide maximum operating efficiency.

Economizer with power exhaust

A unit equipped with an economizer (single or dual enthalpy) and a power exhaust operates as specified above with one addition. The power exhaust motor is energized 45 seconds after the actuator position exceeds the exhaust fan setpoint on the economizer control. The R to G connection provides minimum position but does not provide power exhaust operation.

Motorized outdoor air dampers

This system operation is the same as the units with no outdoor air options with one exception. When the R to G circuit is complete, the motorized damper drives open to a position set by the thumbwheel on the damper motor. When the R to G circuit is opened, the damper spring returns fully closed.

Cooling Operation Errors

Each cooling system is monitored for operation outside of the intended parameters. Errors are handled as described below. All system errors override minimum run times for compressors.

Note: The following components are needed to access the control points in the Smart Equipment[™] control.

Local LCD on Unit Control Board.

OR

- 2. Mobile Access Portal (MAP) Gateway (Portable).
 - Source 1 P/N S1-JC-MAP1810-OP
 - MAP Gateway Quick Start Guide P/N 24-10737-16
 - MAP Gateway Instruction P/N 24-10737-8

High-pressure limit switch

During cooling operation, if a high-pressure limit switch opens, the UCB de-energizes the compressor, initiates the ASCD (antishort cycle delay), and stops the condenser fans. If the call for cooling is still present at the conclusion of the ASCD, the UCB re-energizes the halted compressor.

If a high-pressure switch opens three times within two hours of operation, the UCB locks out the compressor.

Low-pressure limit switch

The low-pressure limit switch is not monitored during the initial 30 seconds of a cooling system's operation. For the following 30 seconds, the UCB monitors the low-pressure switch to ensure that it closes. If the low-pressure switch fails to close after the 30-second monitoring phase, the UCB de-energizes the compressor, initiates the ASCD, and stops the condenser fans.

When the low-pressure switch is proven (closed during the 30second monitor period described above), the UCB monitors the low-pressure limit switch for any openings. If the low-pressure switch opens for greater than 5 seconds, the UCB de-energizes the compressor, initiates the ASCD, and stops the condenser fans.

If the call for cooling is still present at the conclusion of the ASCD, the UCB re-energizes the halted compressor.

If a low-pressure switch opens three times within one hour of operation, the UCB locks out the compressor.

Evaporator low limit

The evaporator low limit sensor (EC1) is located on the suction line at the evaporator coil. During cooling operation, if the evaporator low limit sensor detects a temperature below 26°F (default), the UCB de-energizes the compressor, initiates the ASCD, and stops the condenser fans. If the call for cooling is still present at the conclusion of the ASCD, the UCB reenergizes the halted compressor.

If the UCB detects the evaporator low limit sensor (EC1) falling below 26°F (default) three times within two hours of operation, the UCB locks out the compressor.

Low ambient cooling

To determine when to operate in low ambient mode, the UCB has an outdoor air temperature sensor (OAT) with a low ambient setpoint at 45°F (default). When the OAT sensor senses a temperature below the low ambient setpoint and the thermostat is calling for cooling, the UCB operates in the low ambient mode.

Low ambient mode operates the compressors in this manner: 10 minutes on, 5 minutes off. The indoor blower is operated throughout the cycle. The 5-minute off period is necessary to defrost the indoor coil.

Low ambient mode always begins with compressor operation. Compressor minimum run time may extend the minutes of compressor operation. The off cycle begins immediately following the elapse of the minimum run time.

When operating in low ambient mode, an evaporator low limit sensor (EC1) temperature below 26°F de-energizes the compressor. If the call for cooling is still present at the end of the ASCD and the evaporator temperature sensor (EC1) temperature is above 26°F, the unit resumes operation.

Safety controls

The unit control board monitors the following inputs for each cooling system:

- An evaporator low limit sensor (EC1) to protect against low evaporator temperatures due to a low airflow or a low return air temperature, set at 26°F. The evaporator low limit sensor is located on the suction line at the evaporator coil.
- A high-pressure switch to protect against excessive discharge pressures due to a blocked condenser coil or a condenser motor failure. The switch opens at 625 ± 25 psig.
- A low-pressure switch to protect against loss of refrigerant charge, the switch opens at opens at 50 ± 5 psig.

The above pressure switches are hard-soldered to the unit. The refrigeration systems are independently monitored and controlled. On any fault, only the associated system is affected by any safety or preventive action.

The UCB monitors the temperature limit switch of electric heat units and the temperature limit switch and the gas valve of gas furnace units.

Compressor protection

In addition to the external pressure switches, the compressors also have inherent (internal) protection. If there is an abnormal temperature rise in a compressor, the protector opens to shut down the compressor. The UCB incorporates features to minimize compressor wear and damage. An anti-short cycle delay (ASCD) is used to prevent operation of a compressor too soon after its previous run. Additionally, a minimum run time is imposed any time a compressor is energized.

The ASCD is initiated on unit start-up and on any compressor reset or lock-out.

Reheat mode sequence of operation

The MagnaDRY reheat mode of operation is designed to remove latent heat (humidity) from a space when there are low load conditions and the air conditioning unit is not used to cool the space. The general sequence of operation of the patented MagnaDRY reheat is outlined in the following paragraphs.

The user can select three different modes of operation from the unit control board (UCB) within the Smart Equipment[™] controller menu. The available modes are normal, alternate, and aux. The following sections describe each mode.

Normal occupied operation mode

If the return humidity is greater than or equal to the hot gas reheat humidity setpoint, and there is no demand for cooling, the C1 output energizes and the AUX-HGR output energizes.

If there is a demand for one stage of cooling and the return humidity is greater than or equal to the hot gas reheat (HGR) humidity setpoint, the C1 output energizes but the AUX-HGR output de-energizes.

Any additional cooling demands energize compressor outputs, but do not change the status of the AUX-HGR output.

When the return humidity falls to 3% or more below the setpoint, the C1 and AUX-HGR outputs de-energize.

Note: If HGR enabled for unoccupied operation is enabled, during unoccupied mode the control works the same as described above, except it uses the HGR unoccupied humidity setpoint instead.

Normal cooling mode

When there is a call for first stage cooling, with or without a call for dehumidification, the UCB de-energizes the HGR relay de-energizing SOL 2, SOL 3 (HGRH) and energizes SOL 1, engaging cooling circuit #1 resulting in circuit #1 cooling mode operation. The unit is now in first stage cooling without HGRH. When there is a call for second stage cooling, the UCB engages both circuit #1 and circuit #2 in cooling mode.

The indoor blower operation is always initiated upon a call for first stage cooling, second stage cooling or dehumidification (HGRH). The unit does not operate in the reheat mode if there is any call for heating.

On units with economizers, the unit does not operate in the reheat mode if there is a call for cooling and the economizer is operating as first stage of cooling. All safety devices function as previously described.

Normal reheat mode

When the UCB detects a need for dehumidification through the field installed return/space humidity sensor and there is not a call for cooling, the UCB energizes solenoids SOL 3 (HGRH), SOL 2 and the reheat relay (RHR), which de-energizes SOL 1. The unit then operates with refrigerant flow in the evaporator reheat coil and condenser coil circuit # 1. See Figure 30.

Alternate mode

If the return humidity is greater than or equal to the hot gas reheat humidity setpoint, and there is no demand for cooling, C1 and AUX-HGR outputs energize, and C2 energizes.

If there is a demand for one stage of cooling and the return humidity is greater than or equal to the hot gas reheat humidity setpoint, C1 and AUX-HGR outputs energize, and C2 energizes.

If there is a demand for both first and second cooling stages and the return humidity is greater than or equal to the hot gas reheat humidity setpoint, C1 and C2 outputs energize and AUX-HGR de-energizes.

Any additional cooling demands energize compressor outputs, but do not change the status of the AUX-HGR output.

When the UCB detects a need for dehumidification through the field installed return/space humidity sensor and there is not a call for cooling, the UCB energizes SOL 3, SOL 2, and deenergizes SOL 1. In the ZT150, SOL 4 is only energized when the discharge pressure in circuit #1 rises above 400 psig and deenergizes SOL 4 after the discharge pressure falls below 320 psig. The unit then operates with circuit #1 in reheat mode and circuit #2 in cooling mode.

When there is a call for first stage cooling while there is still a call for dehumidification, no operational change is made. The call for cooling is ignored and the unit continues to operate with circuit #1 in reheat mode and circuit #2 in cooling mode.

When there is a call for second stage cooling, the UCB deenergizes the HGR, which de-energizes SOL 3 and SOL 2, and energizes SOL 1. Both circuits now operate in the cooling mode.

The indoor blower operation is always initiated on a call for first stage cooling, second stage cooling or dehumidification (HGRH). The unit does not operate in the reheat mode if there is any call for heating or two stage cooling.

On units with economizers, the unit does not operate in the reheat mode if there is a call for cooling and the economizer is operating as first stage of cooling. All safety devices function as previously described.

Table 25: 3 stage dehumidification sequence in normal and alternate mode

Request	Normal mode				Alternate mode			
Request	HGR	C1	C2	C3	HGR	C1	C2	C3
Dehumidification	On	On	Off	Off	On	On	On	Off
One stage of cooling (Y1)	Off	On	Off	Off	On	On	On	Off
Two stages of cooling (Y2)	Off	On	On	Off	Off	On	On	Off
Three stages of cooling (Y3)	Off	On	On	On	Off	On	On	On

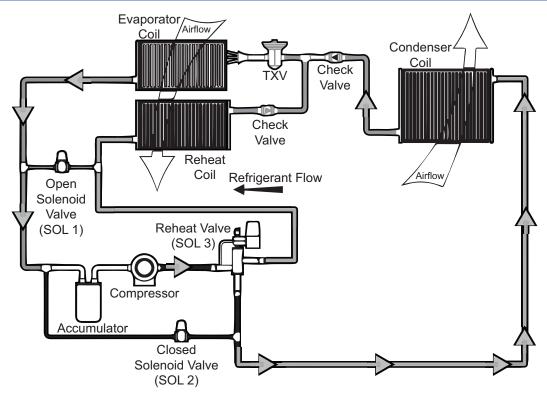


Figure 29: Cooling operation piping schematic - circuit no. 1

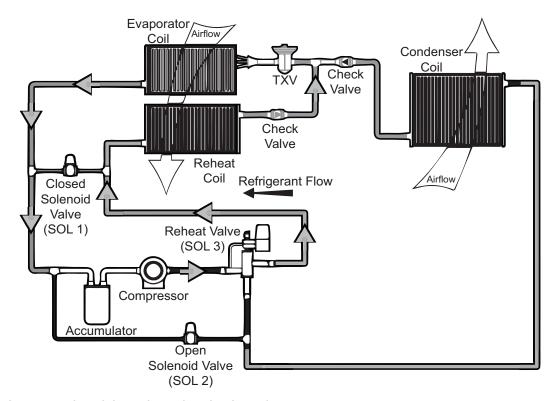


Figure 30: Reheat operation piping schematic - circuit no. 1

Optional aux mode

The aux mode available with hot gas reheat units introduces an operating mode that considers the dry bulb temperature in the

space when choosing hot gas reheat staging. The aux mode reduces the amount of over cooling while maintaining humidity control in the space. The aux mode is only applicable when the unit is set up in the alternate reheat mode.

If there is a call for dehumidification and no call for cooling, the unit automatically reverts back to the normal hot gas reheat mode only allowing refrigerant stage one to run in reheat mode and refrigerant stage two remains off.

If there is a call for dehumidification and a call for cooling, the unit remains in the alternate hot gas reheat mode allowing refrigerant stage one to run in hot gas reheat or dehumidification mode and refrigerant stage two runs in cooling.

Electric heating sequence of operations

The following sequence describes the operation of the electric heat section.

Two-stage heating:

- a. When there is a call for first stage heat by the thermostat, the heater relay (RA) is energized. After completing the specified fan on delay for heating, the UCB energizes the blower motor. If the second stage of heat is required, heater relay (RB) is energized. After completing the specified fan on delay for heating, the UCB energizes the blower motor.
- b The thermostat cycles the electric heat to satisfy the heating requirements of the conditioned space.

Electric heat operation errors

Temperature limit

If the UCB senses zero volts from the high temperature limit, the indoor blower motor is immediately energized.

This limit is monitored regardless of unit operation status, that is, the limit is monitored at all times.

If the temperature limit opens three times within one hour, it locks on the indoor blower.

Safety controls

The UCB monitors the temperature limit switch of electric heat units.

The control circuit includes the following safety controls:

Limit switch

The limit switch (LS) is located inside the heater compartment and is set to open at the temperature indicated in Table 26, *Electric heat limit setting*, on page 64. It resets automatically. The limit switch operates when a high temperature condition caused by inadequate supply air flow occurs. This shuts down the heater and energizes the blower.

Table 26: Electric heat limit setting

Unit (tons)	Voltage	Heater kW	Limit switch opens °F
ZT079 (6 F)		9	150
ZT078 (6.5) ZT090 (7.5)		18	150
ZT1090 (7.5) ZT102 (8.5)		24	150
21102 (0.0)	208/230	36	150
	200/230	18	150
ZT120 (10)		24	150
ZT150 (12)		36	150
		54	130
ZT079 (6 F)		9	150
ZT078 (6.5) ZT090 (7.5)		18	150
ZT1090 (7.5) ZT102 (8.5)		24	150
21102 (0.0)	480	36	150
	700	18	150
ZT120 (10)		24	150
ZT150 (12)		36	150
		54	130

Reset

Reset removes the call for heating by lowering the thermostat setting lower than the conditioned space temperature.

Electric heat anticipator setpoints

The anticipator setpoint must be correct. Too high of a setting results in longer heat cycles and a greater temperature swing in the conditioned space. Reducing the value below the correct setpoint gives shorter ON cycles and may result in the lowering of the temperature within the conditioned space. See Table 27 for the required electric heat anticipator setting.

Table 27: Electric heat anticipator setpoints

Setting, Amps						
W1	W2					
0.13	0.1					

Gas heating sequence of operations

When the thermostat calls for the first stage of heating, the low-voltage control circuit from R to W1 is completed. A call for heat passes through the UCB to the ignition control board (ICB). The UCB monitors the W1 call and acts on any call for heat by monitoring the gas valve (GV). When voltage is sensed at the GV, the UCB initiates the fan on delay for heating, energizing the indoor blower the specified delay has elapsed.

When the thermostat is satisfied, heating calls are ceased. The GV is immediately closed. The blower is de-energized after the fan off delay for heating has elapsed. The draft motor performs a 30-second post purge.

Ignition control board

First stage of heating

When the ICB receives a call for first stage of heating, "W1," the draft motor is energized. Once the draft motor has been proven,

a 30-second purge is initiated. At the end of the purge, the GV is opened and the spark igniter is energized for 10 seconds. The ICB then checks for the presence of flame. If flame is detected, the ICB enters a flame stabilization period. If flame is not detected, the GV closes and a retry operation begins.

During the flame stabilization period, a loss of the flame for 2 seconds causes the GV to close and the retry operation to begin. After the flame stabilization period, a loss of flame for 3/4 second causes the GV to close and the retry operation to begin.

At the conclusion of the flame stabilization period, the ICB operates the gas heat in high fire for an additional 60 seconds, for a total for 120 seconds of high fire operation. After this 60 seconds, the ICB then uses the call for the second stage of heat to control second stage operation of the GV.

When W1 is satisfied, both valves are closed.

Second stage of heating

When the ICB receives a call for the second stage of heating, W2, the ICB conducts a complete first stage ignition sequence. If this sequence is satisfied, the second main valve of the GV is opened.

When W2 is satisfied, the second main valve is closed.

Retry operation

When a flame is lost or is not detected during an attempt to achieve ignition, a retry operation occurs. A 30-second purge is performed between ignition attempts.

If the unit fails after three ignition attempts, the furnace is locked out for one hour. The furnace is monitored during this one-hour period for unsafe conditions.

Recycle operation

When a flame is lost after the flame stabilization period, a recycle operation occurs. If the unit fails after five recycle attempts, the furnace is locked out for one hour.

Gas heating operation errors

Lockout

A one-hour lockout occurs following three retries or five recycles. During the one-hour lockout, flame detection, limit conditions, and main valves are tested. Any improper results will cause the appropriate action to occur. Recycling the low voltage power cancels the lockout.

Temperature limit

If the UCB senses zero volts from the high temperature limit, the indoor blower motor is immediately energized. When the UCB again senses 24 volts from the temperature limit, the draft motor performs a 15-second post-purge and the indoor blower is de-energized following the elapse of the fan off delay for heating.

This limit is monitored regardless of unit operation status, that is, this limit is monitored at all times.

If the temperature limit opens three times within one hour, it locks on the indoor blower motor.

Flame sense

Flame sensing occurs at all times. If W1 is not present and a flame is sensed for 2 seconds, the draft motor is energized and the GV is kept off. The ICB halts any operation until a flame is not detected. Once the flame detection is lost, the ICB performs a post-purge. Normal operation is allowed concurrently with the purge. That is, this purge can be considered the purge associated with a call for W1.

If W1 is present, a flame is sensed but the GV is not energized and the draft motor is energized until the flame detection is lost. Normal operation is now allowed.

The flame detection circuitry continually tests itself. If the ICB finds the flame detection circuitry to be faulty, the ICB does not permit an ignition sequence and the draft motor is energized. If this failure occurs during an ignition cycle, the failure is counted as a recycle.

Gas valve

The UCB and ICB continuously monitor the GV.

If the ICB senses voltage at the GV when not requested, the ICB energizes the draft motor. The ICB does not operate the furnace until voltage is no longer sensed at the GV. The draft motor is stopped when voltage is not sensed at the GV.

Any time the UCB senses voltage at the GV without a call for heat for a continuous five-minute period, the UCB locks on the indoor blower. When voltage is no longer sensed at the GV, the UCB de-energizes the indoor blower following the elapse of the fan off delay for heating.

If voltage is sensed at the GV for at least 15 seconds during the fan on delay for heating and GV voltage or W1 is lost, the indoor blower is forced on for the length of the fan off delay for heating.

During a call for heat, if the UCB does not sense voltage at the GV for a continuous five-minute period, the UCB initiates a error message. The indoor blower motor is not locked on while there is no GV voltage.

Safety controls

The UCB monitors the temperature limit switch of gas heat units.

The control circuit includes the following safety controls:

Limit switch

The limit switch (LS) is located inside the gas heat compartment and is set to open at the temperature indicated in Table 13. It resets automatically. The limit switch operates when a high temperature condition, caused by inadequate supply air flow occurs. This shuts down the heater and energizes the blower.

Auxiliary limit switch

The auxiliary limit switch (ALS) is wired in series with the limit switch. As such, the UCB cannot distinguish the auxiliary limit and the gas heat limit switch operation except the auxiliary is manual reset. Consequently, the control responds in the same manner as outlined in *Limit switch* on page 65.

The ICB monitors the pressure and roll out switches of gas heat units.

The control circuit includes the following safety controls:

Pressure switch

When the draft motor has reached full speed and closes the pressure switch (PS) during a normal ignition sequence, if the pressure switch opens for 2 seconds, the GV is de-energized, the ignition cycle is aborted, and the ICB flashes the appropriate code. For information on the ignition control flash codes, see Table 33 on page 76. The draft motor is energized until the pressure switch closes or W1 is lost.

Roll-out switch

The roll-out switch (ROS) is wired in series with the pressure switch. As such, the ICB cannot distinguish the roll-out switch operation from that of the pressure switch.

Consequently, the control only responds in the same manner as outlined in *Pressure switch* on page 66. An open roll-out inhibits the gas valve from actuating.

Internal microprocessor failure

If the ICB detects an internal failure, it ceases all outputs, ignores inputs, and displays the proper flash code for control replacement. The ICB remains in this condition until it is replaced.

Flash codes

The ICB initiates a flash code associated with errors within the system, Table 33 on page 76.

Resets

Resets remove the call for heating by lowering the thermostat setting lower than the conditioned space temperature. This resets any flash codes.

Gas heat anticipator setpoints

The anticipator setpoint must be correct. Too high of a setting results in longer heat cycles and a greater temperature swing in the conditioned space. Reducing the value below the correct setpoint gives shorter ON cycles and may result in the lowering of the temperature within the conditioned space. See Table 28 for the required gas heat anticipator setting.

Table 28: Gas heat anticipator setpoints

Setting, amps						
W1	W2					
0.65	0.1					

Cooling start-up

Pre-start checklist

When the installation is complete, perform the following checks:

- Check the electrical supply voltage being supplied. Verify that it is the same as the voltage listed on the unit nameplate.
- 2. Set the room thermostat to the off position.
- 3. Turn on electrical power to the unit.
- 4. Set the room thermostat fan switch to on.
- Check the indoor blower rotation.
 - If the blower rotation is in the wrong direction, see Phasing on page 48.

Check the blower drive belt tension.

- 6. Check the unit supply air (CFM).
- 7. Measure the evaporator fan motor's amp draw.
- 8. Set the room thermostat fan switch to off.
- 9. Turn off electrical power to the unit.

Operating the unit

1. Turn on electrical power to the unit.

Note: Before each cooling season, you must energize the crankcase heaters at least 10 hours before the system is put into operation.

Set the room thermostat setting lower than the room temperature.

First stage compressors energize after the built-in time delay of five minutes.

The second stage of the thermostat energizes the second stage compressor if needed.

Post-start checklist

- 1. Verify proper system pressures for both circuits.
- 2. Measure the temperature drop across the evaporator coil.

Gas heat start-up

Pre-start checklist

When the installation is complete, perform the following checks.

- Check the type of gas supply. Verify that it is the same as the gas supply listed on the unit nameplate.
- 2. Verify that the vent outlet and combustion air inlet are free of any debris or obstruction.

Operating instructions

This furnace is equipped with an automatic re-ignition system. Do not attempt to manually light the pilot.

Lighting the main burners

- 1. Turn off electrical power to unit.
- 2. Set the room thermostat to lowest setting.
- Turn the gas valve counter-clockwise to the ON position (see Figure 32).
- 4. Turn on electrical power to unit.

If the set temperature on the thermostat is above room temperature, the main burners ignite. If a second stage of heat is called for, the main burners for second stage heat ignite for the second stage heat.

Post-start checklist

After the entire control circuit is energized and the heating section is operating, perform the following checks:

 Check for gas leaks in the unit piping and the supply piping.

AWARNING

Fire or explosion hazard

Failure to follow the safety warning exactly could result in serious injury, death, or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

- Check for the correct manifold gas pressures. See Checking gas heat input on page 67.
- 3. Check the supply gas pressure. It must be within the limits shown on the rating nameplate.

Note: You must check the supply pressure with all gas appliances in the building at full fire. The standby gas pressure must never exceed 10.5 in. or the operating pressure drop below 4.5 in. for natural gas units. If the gas pressure is outside these limits, contact the local gas utility or propane supplier for corrective action.

Shutting down the unit

- 1. Set the thermostat to the lowest temperature setting.
- 2. Turn off electrical power to unit.
- 3. Open the gas heat access panel.
- 4. Turn the gas valve clockwise to the OFF position (see Figure 32).

Checking gas heat input

This unit has two stages of gas heat. The first stage is 60% of the full fire input and is considered the minimum input for the furnace. The intended input for each furnace is shown in Table 30. The table applies to units operating on 60 Hz power only.

Determining the rate of gas flow (second stage)

- Turn off all other gas appliances connected to the gas meter.
- Turn on the furnace and verify that the thermostat is calling for second stage (100% input) heat.
- Measure the time needed for one revolution of the hand on the smallest dial on the meter. A typical gas meter has a 1/ 2 or a 1 cubic foot test dial.
- Using the number of seconds it takes for one revolution of the dial, calculate the cubic feet of gas consumed per hour (see page 68).
- If necessary, adjust the high pressure regulator, see Adjusting the manifold gas pressure on page 68.

Note: Do not over-fire the furnace on second stage. If in doubt, it is better to leave the second stage of the furnace slightly under-fired.

6. Repeat Steps 1-5.

Determining the rate of gas flow (first stage)

- Turn off all other gas appliances connected to the gas meter.
- Turn on the furnace and make sure the thermostat is calling for first stage (60% input) heat.
- Wait for the initial second stage period to complete and verify that the unit is in first stage.
 - Even when the thermostat is calling for first stage heat, the unit lights on second stage and runs on second stage for 1 minute.
- Measure the time needed for one revolution of the hand on the smallest dial on the meter. A typical gas meter has a 1/ 2 or a 1 cubic foot test dial.
- Using the number of seconds it takes for one revolution of the dial, calculate the cubic feet of gas consumed per hour (see page 68).
- If necessary, adjust the low pressure regulator, see Adjusting the manifold gas pressure on page 68.

Note: Do not under-fire the furnace on the first stage. If in doubt, it is better to leave the first stage of the furnace slightly over-fired (greater than 60% input).

7. Repeat Steps 1-6.

Table 29: Gas rate cubic feet per hour

Seconds for	Size of T	est Dial
One Rev.	1/2 cu. ft.	1 cu. ft.
10	180	360
12	150	300
14	129	257
16	113	225
18	100	200
20	90	180
22	82	164
24	75	150
26	69	138
28	64	129
30	60	120
32	56	113
34	53	106
36	50	100
38	47	95
40	45	90
42	43	86
44	41	82
46	39	78
48	37	75
50	36	72
52	35	69
54	34	67
56	32	64
58	31	62
60	30	60

Calculating the cubic feet of gas consumed per hour

 To find the BTU input, multiply the number of cubic feet of gas consumed per hour by the BTU content of the gas in your particular locality.

Note: The BTU content of gas varies widely from area to area, contact your gas company for this information.

By actual measurement, it takes 46 seconds for the hand on a 1 cubic foot dial to make a revolution with a 80,000 BTU/h furnace running.

- 2. To determine rotations per minute, divide 60 by 46 = 1.30.
- 3. To calculate rotations per hour, multiply 1.30 60 = 78.
- 4. Multiply 78 1 (0.5 if using a 1/2 cubic foot dial) = 78.
- Multiply 78 (the BTU rating of the gas). For this example, assume the gas has a BTU rating of 1050 BTU/ft.³.

The result of 81,900 BTU/h is within 5% of the 80,000 BTU/h rating of the furnace.

Adjusting the manifold gas pressure

This gas furnace has two heat stages. The gas valve has two adjustment screws located under a plastic protective cover. The second stage (100% input) adjustment screw is adjacent to the HI marking on the valve. The first stage (60% input) adjustment screw is located adjacent to the LO marking on the valve (see Figure 32).

Adjust the second stage (100% input) pressure first, then adjust first stage (60% input) pressure.

- 1. Turn off electrical power to the unit.
- Using the outlet pressure port on the gas valve, connect a manometer to monitor the manifold pressure.
- Remove the plastic cap that covers the HI and LO pressure adjustment screws.
- 4. Turn on electrical power to the unit.
- Set the thermostat to call for second stage heat and start the furnace.
- If necessary, use a screwdriver to turn the second stage adjustment screw clockwise to increase manifold pressure or counterclockwise to decrease manifold pressure.

Note: Do not to over-fire the unit on second stage.

- After you check the high manifold pressure, adjust the thermostat to call for first stage heat.
- 8. If necessary, use a screwdriver to turn the first stage adjustment screw clockwise to increase manifold pressure or counterclockwise to decrease manifold pressure.

Note: Do not to under-fire the unit on first stage.

After you check the pressure, replace the plastic cap covering the HI and LO pressure adjustment screws.

Note: When using natural gas, the manifold pressure for second stage (100% input) is 3.5 IWG ± 0.3. The manifold pressure for first stage (60% input) when using natural gas is 1.5 IWG ± 0.3.

Table 30: Gas heat stages

Unit	No. of burner tubes	1st stage input (100% BTU/h)	2nd stage input (60% BTU/h)		
079 000 102	4	120,000	72,000		
078, 090, 102, 120, 150	6	180,000	108,000		
120, 130	8	240,000	144,000		

Table 31: Gas heat limit control settings¹

	Unit	Main limit setting °F
Size	Option	Main mint setting P
078	N12	165
070	N18	165
090	N12	165
090	N18	165
102	N12	215
102	N18	195
120	N18	195
120	N24	160
150	N18	195
130	N24	160

1. Roll-out = 300°F, Auxiliary limit = 200°F

Adjusting the temperature rise

The temperature rise is the difference of temperature between the return air and the heated air from the furnace. The temperature rise must lie within the range shown on the CSA rating plate and the data in Table 13.

 After about 20 minutes of operation, determine the furnace temperature rise. Take readings of both the return air and the heated air in the ducts (about 6 feet from the furnace) where they are not affected by radiant heat. After you determine the temperature rise, calculate the CFM according to the following formula.

CFM = Btu Input •
$$\frac{0.8}{(1.08 \cdot \Delta^{\circ}F)}$$

Increase the blower CFM to decrease the temperature rise.
 Decrease the blower CFM to increase the rise (see Supply air drive adjustment on page 58).

Note: Each gas heat exchanger size has a minimum allowable CFM. Below this CFM, the limit opens.

Inspecting and servicing burners and orifices

AWARNING

Before you check or change burners, pilot, or orifices, close the main manuals shut-off valve and turn off all electrical power to the unit.

- Open the union fitting just upstream of the unit gas valve and downstream from the main manual shut-off valve in the gas supply line.
- 2. Remove the screws that hold each end of the manifold to the manifold supports.
- 3. Disconnect the wiring to the gas valves and spark igniters.
- Remove the manifold and gas valve assembly. Inspect the orifices and replace them if required.
- 5. To service the burners, remove the heat shield on top of the manifold supports. Inspect the burners and replace them if required.
- Reverse the above procedure to replace the assemblies. Verify that burners are level and seated at the rear of the gas orifice.

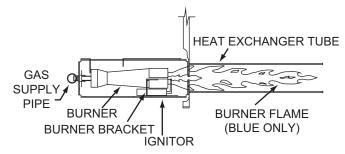


Figure 31: Typical flame

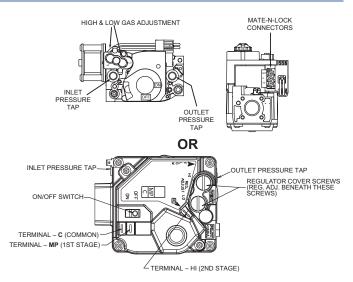


Figure 32: Typical two stage gas valve

Navigation components for the Smart Equipment™ control board

The following components are needed to access the control points in the Smart Equipment[™] control. Installation and operation guides are available from your equipment dealer or distributor.

- 1. Local LCD on the unit control board.
- 2. Mobile Access Portal (MAP) Gateway (portable).
 - Source 1 P/N S1-JC-MAP1810-OP
- 3. MAP Gateway Quick Start Guide P/N 24-10737-16
- 4. MAP Gateway Instruction P/N 24-10737-8

For more information on the Smart EquipmentTM unit control board navigation, refer to the *Smart Equipment*TM *Quick Start Guide*.

Note: For more in-depth sequence of operation of the Smart Equipment[™] control, refer to the Smart Equipment[™] Controls Sequence of Operation Overview LIT-12011950.

Smart Equipment™ unit control board

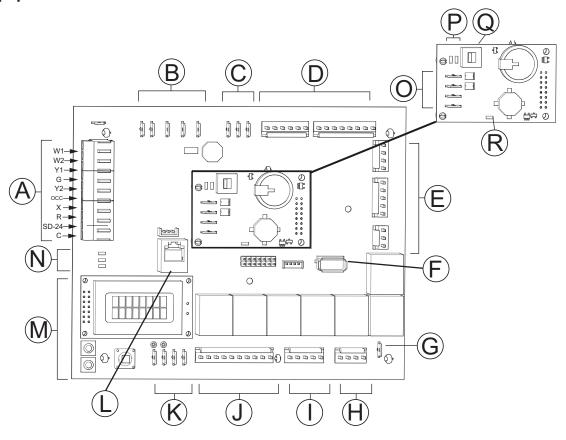


Figure 33: Unit control board

The following tables describe the details of the UCB, see Figure 33 for the connection locations.

Smart Equipment™ UCB - thermostat connection strip

Location	Label	Description	Function and comments	
	W1	1st stage heating request, 24 VAC input switched from R	Not effective for cooling-only units	
	W2	2nd stage heating request, 24 VAC input switched from R	Not effective for cooling-only units or units with single-stage heat sections	
	Y1	1st stage cooling request, 24 VAC input switched from R		
	Y2	2nd stage cooling request, 24 VAC input switched from R	Visible in the display menu when the #ClgStgs parameter is set for 2 or more, also effective for economizer free cooling supply air temperature reset when the #ClgStgs parameter is set for 1 or more	
Α	G	Continuous indoor blower request, 24 VAC input switched from R		
A	осс	Occupancy request, 24 VAC input switched from R	Must have the OccMode parameter set for External to be effective	
	Х	Hard lockout indicator, 24 volt output to a light thermostat LED		
	R	24 VAC hot for thermostat switching and power	If field-added external accessories for unit shutdown are used, 24 VAC hot return from smoke detector, condensate overflow and/or user shutdown relay switching in series	
	SD-24	If field-added external accessories for unit shutdown are used, 24 VAC hot out for smoke detector, condensate overflow and/ or user shutdown relay switching in series	Unit wiring harness jumper plug for factory shutdown accessories must be removed if the switching of field-added external accessories for unit shutdown are wired between thermostat connection strip SD-24 and R	
	С	24 VAC common for thermostat power		

Smart Equipment™ UCB - limit, 24 VAC power, and shutdown connections

Location	Label	Description	Function and comments
	LIMIT	Monitored 24 VAC input through heat section limit switch(es)	If voltage is absent, indicating the heat section is over-temperature, the UCB will bring on the indoor blower
	С	24 VAC, 75 VA transformer Common referenced to cabinet ground	Connects through circuit traces to thermostat connection strip C and indoor blower VFD pin C
	24V	24 VAC, 75 VA transformer hot	Powers the UCB microprocessor, connects through circuit trace to the SD 24 terminal
В	SD 24	24 VAC hot out for factory accessory smoke detector, condensate overflow and/or user shutdown relay switching in series	Connects through circuit trace to thermostat connection strip SD-24. A wiring harness jumper plug connecting SD 24 to SD R is in place if factory accessories for unit shutdown are not used - this jumper plug must be removed if the switching of field-added external accessories for unit shutdown are wired between thermostat connection strip SD-24 and R
	SD R	24 VAC hot return from factory accessory smoke detector, condensate overflow and user shutdown relay switching in series	Connects through circuit trace to the R terminal on the upper left of the board
	R	24 VAC hot for switched inputs to the UCB	Connects through circuit trace to the thermostat connection strip R terminal, right FAN OVR pin, right HPS1 pin, right HPS2 pin, lower DFS pin and lower APS pin

Smart Equipment $^{\mbox{\tiny TM}}$ UCB - space temperature sensor connections

Location	ocation Label Description		Function and comments	
	ST	Space Temperature sensor input from 10KΩ @ 77°F, Type III negative temperature coefficient thermistor	Positive of VDC circuit (3.625 VDC reading to COM with open circuit), effective if "Thermo- stat-only Control" parameter is set OFF, space sensor override momentary shorts ST to COM to initiate/terminate temporary occupancy	
С	COM	Common for ST and SSO inputs	Negative of VDC circuit for ST and SSO inputs	
	sso	Space Sensor Offset input from 0 to $20 \text{K}\Omega$ potentiometer	Positive of VDC circuit (3.625 VDC reading to COM with open circuit), $10K\Omega/2.5$ VDC is 0°F offset, $0\Omega/0$ VDC is maximum above offset and $20K\Omega/3.4$ VDC is maximum below offset from active space temperature setpoint	

Smart Equipment™ UCB - temperature sensor connections

Location	Label	Description	Function and comments
	SAT+	Supply Air Temperature sensor input from 10KΩ @ 77°F, Type III negative temperature coefficient thermistor	Input required for operation; 3.625 VDC reading SAT+ to SAT– with open circuit. Used in heat/cool staging cutouts, free cooling operation, demand ventilation operation, comfort ventilation operation, economizer loading operation, VAV cooling operation, hydronic heat operation.
	RAT+	Return Air Temperature sensor input from $10K\Omega$ @ 77°F, Type III negative temperature coefficient thermistor	Input required for operation; 3.625 VDC reading RAT+ to RAT- with open circuit. Used in return air enthalpy calculation. Substitutes for space temperature if no other space temperature input is present.
D	OAT+	Outside Air Temperature sensor input from $10K\Omega$ @ $77^{\circ}F$, Type III negative temperature coefficient thermistor	Input required for operation but may be a communicated value; 3.625 VDC reading OAT+ to OAT- with open circuit. Used in heat/cool cutouts, low ambient cooling determination, dry bulb free cooling changeover, outside air enthalpy calculation, economizer loading operation, heat pump demand defrost calculation.
	CC1+	#1 refrigerant circuit Condenser Coil temperature sensor input from 10KΩ @ 77°F, Type III negative temperature coefficient thermistor	Input required for heat pump units, not required for A/C units; 3.625 VDC reading CC1+ to CC1– with open circuit. Used in heat pump demand defrost calculation.
	EC1+	#1 refrigerant circuit Evaporator Coil temperature sensor input from 10KΩ @ 77°F, Type III negative temperature coefficient thermistor	Input required for operation; 3.625 VDC reading EC1+ to EC1- with open circuit. Used in suction line temperature safety.

Smart Equipment™ UCB - temperature sensor connections (Continued)

Location	Label	Description	Function and comments
D	CC2+	#2 refrigerant circuit Condenser Coil temperature sensor input from 10KΩ @ 77°F, Type III negative temperature coefficient thermistor	Input required for 2-compressor heat pump units, not required for 2-compressor A/C units, not active for 1-compressor units; 3.625 VDC reading CC2+ to CC2- with open circuit. Used in heat pump demand defrost calculation.
	EC2+	i i	Input required for operation of 2-compressor units, not active for 1-compressor units; 3.625 VDC reading EC2+ to EC2– with open circuit. Used in suction line temperature safety.

Smart Equipment™ UCB - pinned connections

Location	Label	Description	Function and comments
	RAH+	Return Air Humidity input from 0-10 VDC @ 0- 100% RH sensor	Input required for reheat units, optional in all other units, may be a communicated value. Used in return air enthalpy calculation, temperature/humidity setpoint reset, reheat operation.
	DCT PRS+	Supply Duct Pressure input from 0-5 VDC @ 0-5" w.c. sensor	Input required for variable air volume units. Used in VAV indoor blower operation.
	DFS (upper pin)	24 VAC hot return from Dirty Filter Switch	Optional input; switch closure for greater than 15 seconds during indoor blower operation initiates a notification alarm
	DFS (lower pin)	24 VAC hot out for Dirty Filter Switch	Connects through circuit trace to the R terminal
E	APS (upper pin)	24 VAC hot return from Air Proving Switch	When this optional input is enabled: the air proving switch must close within 30 seconds of initiation of indoor blower operation and not open for greater than 10 seconds during indoor blower operation to allow heat/cool operation and prevent an "APS open" alarm; the air proving switch must open within 30 seconds of termination of indoor blower operation to prevent an "APS stuck closed" notification alarm
	APS (lower pin)	24 VAC hot out for Air Proving Switch	Connects through circuit trace to the R terminal
	С	Common for the VFD output	Negative of the VDC circuit for the VFD output
	VFD	2-10 VDC (0-100%) output for the indoor blower Variable Frequency Drive	Output is active with indoor blower operation. For CV units: this output provides stepped IntelliSpeed control of the indoor blower VFD based on fan-only, cooling stage and heating stage outputs. For VAV units: this output provides control of the indoor blower VFD based on supply duct static pressure input and setpoint.
	VFDFLT	24 VAC hot input from the normally open VFD alarm contact	The VFD alarm contact switches from R within the unit wiring harness. 24 VAC input results in unit shutdown and a "VFD fault" alarm

Smart Equipment™ UCB - USB connector

Location	Label	Description	Function and comments	
F	J10	LIVNE A temale Universal Serial Bus connector	Used for backup, restoration, & copying of board parameters as well as board software updating through a flash drive	
	J15	Factory wired SA Bus connector		

Smart Equipment™ UCB - 24 V terminal

Location	Label	Description	Function and comments
G	24V FUR UUIPUIS	FAN C1 and C2 output relay contact switching	Output relay circuitry is isolated from other UCB components and the 24 VAC hot source may be from a second transformer in the unit

Smart Equipment $^{\mbox{\scriptsize TM}}$ UCB - heat section connections

Location	Label	Description	Function and comments	
	H1	24 VAC hot output for heat section stage 1	Not effective for cooling-only units. Output if demand is present and permissions allow one stage or two stages of heat section operation	
	H2	24 VAC hot output for heat section stage 2	Not effective for cooling-only units or units with single-stage heat sections Output if demand is present and permissions allow two stages of heat section operation	
н	MV	24 VAC hot input confirming heat section operation	Sourced from gas valve in gas heat units or first stage heat contactor in electric heat units. Input within 5 minutes from initiation of H1 output initiates the "Heat On Fan Delay" timer, loss of input following the termination of H1 output initiates the "Heat On Fan Delay" timer, no input within 5 minutes from initiation of H1 output initiates an "Ignition Failure" alarm, input for longer than 5 minutes without H1 output initiates a "Gas Valve Mis-wire" alarm	

Smart Equipment™ UCB - pin cooling and fan output

Location	Label	Description	Function and comments		
	CN-FAN	24 VAC hot output for the condenser fan contactor coil	Output with either C1 or C2 output; interrupted during defrost cycle for heat pump units		
	AUX HGR	24 VAC hot output for hot gas reheat components	Effective only for reheat units, output with reheat operation		
	FAN	24 VAC hot output for indoor blower contactor coil/indoor blower VFD enable relay coil	Output with heat/cool operation, G input or schedule demand		
I	C1	24 VAC hot output for compressor 1	If demand is present and permissions allow compressor 1 operation; output with compressor cooling, comfort ventilation cooling, reheat or heat pump heating demands		
	C2 24 VAC hot output for compressor 2		Not effective for one stage compressor UCBs. If demand is present and permissions allow compressor 2 operation; output with compress cooling, comfort ventilation cooling or heat pump heating demands		

Smart Equipment™ UCB - refrigerant circuit safety switch and indoor blower overload connections

Location	Label	Description	Function and comments		
	HPS1 (right pin)	24 VAC hot out for refrigerant circuit 1 High Pressure Switch	Connects through circuit trace to the R terminal		
	HPS1 (left pin)	24 VAC hot return from refrigerant circuit 1 High Pressure Switch	Input is only considered if C1 output is needed; input must be presen to allow C1 output. Three HPS1 trips in a two hour period cause a "High Pressure Switch 1 Lockout" and C1 output is then prevented until alarm reset. Connects through circuit trace to the right LPS1 pir		
	LPS1 (right pin)	24 VAC hot out for refrigerant circuit 1 Low Pressure Switch	Connects through circuit trace to the left HSP1 pin		
J	LPS1 (left pin)	24 VAC hot return from refrigerant circuit 1 Low Pressure Switch	Input is only considered after 30 seconds of C1 output; afterwards, input must be present to allow C1 output. Three LPS1 trips in a one hour period cause a "Low Pressure Switch 1 Lockout" and C1 output is then prevented until alarm reset.		
	HPS2 (right pin) 24 VAC hot out for refrigerant circuit 2 High Pressure Switch		Not effective for one stage compressor UCBs. Connects through circuit trace to the R terminal		
	HPS2 (left pin) 24 VAC hot return from refrigerant circuit 2 High Pressure Switch		Not effective for one stage compressor UCBs. Input is only considered if C2 output is needed; input must be present to allow C output. Three HPS2 trips in a two hour period cause a "High Pressur Switch 1 Lockout" and C2 output is then prevented until alarm rese Connects through circuit trace to the right LPS2 pin.		

Smart Equipment™ UCB - refrigerant circuit safety switch and indoor blower overload connections (Continued)

Location	Label	Description	Function and comments			
	LPS2 (right pin)	24 VAC hot out for refrigerant circuit 2 Low Pressure Switch	Not effective for one stage compressor UCBs. Connects through circuit trace to the left HSP2 pin			
	LPS2 (left pin)	24 VAC hot return from refrigerant circuit 2 Low Pressure Switch	Not effective for one stage compressor UCBs. Input is only considered after 30 seconds of C2 output; afterwards, input must be present to allow C2 output. Three LPS2 trips in a one hour period cause a "Low Pressure Switch 2 Lockout" and C2 output is then prevented until alarm reset.			
J	FAN OVR (right pin)	24 VAC hot out for indoor blower FAN Overload relay contact/motor protector switch	Connects through circuit trace to the R terminal			
	FAN OVR (left pin) 24 VAC hot return from indoor blower FAN Overload relay contact/motor protector switch		Input is only considered if FAN output is needed; input must be present to allow FAN output and unit operation. One FAN OVR tri lasting longer than 5 minutes or three FAN OVR trips in a two hou period cause a "Fan Overload Lockout" and unit operation is then prevented until alarm reset.			

Smart Equipment™ UCB - SA BUS¹ connections

Location	Label	Description	Function and comments				
	PWR	Power for SA ("Sensor-Actuator") BUS devices	Also incorporated in the J8 6-pin phone jack connector at the left-center of the board. Positive of the 15 VDC (reading to C) circuit for powering an optional netstat and/or Multi Touch gateway				
	С	Common for SA BUS power and communication circuits	Also incorporated in the J8 6-pin phone jack connector at the left-center of the board. Negative of the SA BUS circuits				
к	1	Communication for SA BUS devices	Also incorporated in the J8 6-pin phone jack connector at the left-center of the board. Positive of the VDC (typically, a fluctuating 1.5 to 3.5 volts reading to C; at least 0.25 volts lower than +) SA BUS communication circuit to optional economizer board, 4-stage board, fault detection & diagnostics board, netstat and/or Multi Touch gateway				
	+	Communication for SA BUS devices	Also incorporated in the J8 6-pin phone jack connector at the left-center of the board. Positive of the VDC (typically, a fluctuating 1.5 to 3.5 volts reading to C; at least 0.25 volts higher than –) SA BUS communication circuit to optional economizer board, 4-stage board, fault detection & diagnostics board, netstat and/or Multi Touch gateway				
L	J8	6-pin phone jack connector	Incorporates the SA BUS terminals for convenience/alternate connection of SA BUS devices, primarily used for temporary service connection of the Multi Touch gateway				

^{1.} When wiring unit and other devices using the SA Bus and FC Bus, see Table 32.

Smart Equipment™ UCB - user interface

Location	Label	Description	Function and comments
	Display	IOn-hoard 2-line v.8-character hack-lit display	On-board display, buttons and joystick allow access to UCB, economizer, 4-stage and FDD board parameters
	ENTER	Button for display menu acknowledgment and navigation	
М	CANCEL	Button for display menu navigation and zeroing of active compressor ASCD timer	
	JOY	4-way Joystick for display menu navigation	

Smart Equipment™ UCB - LEDs

Location	Label	Description	Function and comments				
	POWER	Green UCB power indicator	Lit indicates 24 VAC is present at C and 24V terminals				
N	FAULT	Red hard lockout, networking error and firmware error indicator	1/2 second on/off flashing indicates one or more alarm is currently active, 1/10th second on/off flashing indicates a networking error (polarity, addressing, etc.) or a firmware error (likely correctable with re-loading from USB flash drive)				
	SA BUS	Green UCB SA bus communication transmission indicator	Lit/flickering indicates UCB SA bus communication is currently active, off indicates the UCB is awaiting SA bus communication				

Smart Equipment™ UCB - optional communication sub-board

Location	Label	Description	Function and comments		
	FC+	FC ("Field Connected") BUS BACnet MSTP communication	Positive of the VDC (typically, a fluctuating 1.5 to 3.5 volts reading to COM; at least 0.25 volts higher than –) FC bus BACnet MSTP communication circuit		
O ¹ Terminal FC BUS	FC-	FC ("Field Connected") BUS BACnet MSTP communication	Positive of the VDC (typically, a fluctuating 1.5 to 3.5 volts reading to COM; at least 0.25 volts lower than +) FC bus BACnet MSTP communication circuit		
connections	COM Common for the FC ("Field Connected") BUS BACnet MSTP communication circuit		Negative of the VDC FC bus BACnet MSTP communication circuit		
	SHLD	Shield for the FC ("Field Connected") BUS BACnet MSTP communication circuit	Earth ground reference of the cable to prevent interference on the FC bus BACnet MSTP communication circuit		
Q	EOL switch	End Of Line selector switch for the FC BUS BACnet MSTP communication circuit	ON selected only for the UCB that is the terminus of the FC bus BACnet MSTP communication cable to prevent signal "bounce-back"		
	EOL	Green End Of Line indicator	Lit indicates the EOL switch is selected ON		
P	FC BUS	Green FC bus communication transmission indicator	Lit/flickering indicates outgoing UCB FC bus communication is currently active, off indicates the UCB is awaiting incoming FC bus communication		
R	ISO PWR	Green communication board Isolated Power indicator	Lit indicates the UCB is supplying power to the communication sub- board		

Table 32: Cable for FC buses and SA buses in order of preference

Bus and cable type	Non-plenum appli	ications	Plenum applications		
	Part number	O.D.	Part number	O.D.	
FC Bus: 22 AWG Stranded, 3-Wire Twisted Shielded Cable ¹	Anixter: CBL-22/3-FC-PVC Belden®: B5501FE	0.138 in.	Anixter: CBL-22/3-FC-PLN Belden: B6501FE	0.140 in.	
SA Bus (Terminal Block): 22 AWG Stranded, 4-Wire, 2 Twisted-Pair Shielded Cable	Anixter: CBL-22/2P-SA-PVC Belden: B5541FE	0.209 in.	Anixter: CBL-22/2P-SA-PLN Belden: B6541FE	0.206 in.	
SA Bus (Modular Jack): 26 AWG Solid 6-Wire, 3 Twisted-Pair Cable ²	_	_	Anixter preassembled: CBL- NETWORK25 CBL- NETWORK50 CBL- NETWORK75 CBL- NETWORK100	0.15 in.	
FC Bus: 22 AWG Stranded, 3-Wire Twisted Non-Shielded Cable	Belden: B5501UE	0.135 in.	Belden: B6501UE	0.131 in.	
SA Bus (Terminal Block): 22 AWG Stranded, 4-Wire, 2 Twisted-Pair Non-Shielded Cable	Belden: B5541UE	0.206 in.	Belden: B6541UE	0.199 in.	

- 1. We strongly recommend 3-wire (for FC bus) and 4-wire, 2 twisted-pair (for SA bus), 22 AWG stranded, shielded cable. A 22 gauge cable offers the best performance for various baud rates, cable distances, and number of trunk devices primarily due to lower conductor-to-conductor capacitance. Shielded cable offers better overall electrical noise immunity than non-shielded cable. Observe the shield grounding requirements.
- 2. We recommend 26 AWG solid, 6-wire (3 twisted pairs) cable as the best fit for fabricating modular cables with the modular jack housing assembly. Be sure the cable you use fits the modular jack housing. The preassembled cables that are available from Anixter (Part No. CBL-NETWORKxxx) use 24 gauge wire.

Table 33: Ignition control flash codes

Flashes	Fault conditions	Check
Steady on	Control Failure	Control
Heartbeat	Normal Operation	
1	Not Applicable	
2	Pressure Switch Stuck Closed	Pressure Switch
3	Pressure Switch Failed To Close	Venter Pressure Switch Vent Blocked
4	Limit Switch Open	Main Limit AUX Limit
5	Flame Present With Gas Off First Stage Gas Valve Energized With W1 Off Second Stage Gas Valve Energized With First Stage Gas Valve Off	Gas Valve
6	Ignition Lockout	Gas Flow Gas Pressure Gas Valve Flame Sensor
Steady off	No Power Or Control Failure	24VAC or Control

Charging the unit

Charge unit by weight using name plate data or use charging tables.

Table 34: ZT078 charging table - system 1

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
200 CEM/top	75	124	53	267	76	29	80	51
300 CFM/ton 80/62	85	127	53	306	86	28	80	52
	95	131	55	350	95	26	80	54
300 CFM/ton	75	135	58	268	75	25	80	55
80/67	85	138	58	309	85	23	80	57
00/07	95	140	59	355	95	22	80	58
300 CFM/ton	75	147	64	269	75	20	80	60
80/72	85	151	64	310	85	19	80	61
00/12	95	153	64	355	95	17	80	63
300 CFM/ton	75	123	51	268	76	25	75	51
75/62	85	127	53	306	86	23	75	52
13/02	95	131	54	354	96	21	75	54
400 CEM/4am	75	135	58	258	76	26	80	54
400 CFM/ton 80/62	85	137	58	303	85	25	80	55
00/02	95	140	59	354	97	24	80	56
400 CEM/4am	75	146	64	260	76	22	80	58
400 CFM/ton 80/67	85	148	62	304	85	21	80	59
00/07	95	151	62	355	97	19	80	61
400 CEM/4am	75	155	70	271	77	17	80	63
400 CFM/ton 80/72	85	161	69	305	86	16	80	64
00/12	95	164	68	354	97	15	80	65
400 CEM/to:-	75	134	57	264	77	22	75	53
400 CFM/ton 75/62	85	135	57	308	86	21	75	54
13/02	95	137	57	353	96	19	75	56

Table 35: ZT078 charging table - system 2

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton 80/62	75	121	52	272	74	29	80	51
	85	124	54	329	84	28	80	52
	95	131	56	398	95	26	80	54
300 CFM/ton	75	133	57	276	75	25	80	55
80/67	85	137	58	329	85	23	80	57
00/07	95	140	59	416	95	22	80	58
200 CEM/4am	75	144	62	274	75	20	80	60
300 CFM/ton 80/72	85	150	62	322	85	19	80	61
00/12	95	154	63	382	95	17	80	63
200 CEM/4am	75	121	52	272	73	25	75	51
300 CFM/ton 75/62	85	124	54	329	84	23	75	52
73/02	95	130	54	374	94	21	75	54
400 CFM/ton	75	133	57	262	73	26	80	54
80/62	85	135	57	304	83	25	80	55
00/02	95	140	58	357	95	24	80	56
400 CFM/ton	75	144	60	260	73	22	80	58
80/67	85	147	61	303	84	21	80	59
00/01	95	152	61	352	95	19	80	61
400 CFM/ton	75	157	65	265	74	17	80	63
80/72	85	160	65	306	84	16	80	64
00/12	95	165	65	350	96	15	80	65
400 CFM/ton	75	131	55	261	74	22	75	53
75/62	85	134	56	305	83	21	75	54
13/02	95	137	55	359	94	19	75	56

Table 36: ZT090 charging table - system 1

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton	75	133	55	252	82	31	80	49
80/62	85	135	54	293	92	29	80	51
00/02	95	137	54	339	99	28	80	52
200 CEM/4	75	143	60	254	81	26	80	54
300 CFM/ton 80/67	85	146	60	296	91	25	80	55
00/07	95	149	60	342	99	23	80	57
000 0514/4	75	156	67	259	80	21	80	59
300 CFM/ton 80/72	85	160	67	300	90	20	80	60
00/12	95	162	67	346	99	19	80	61
000 0514/4	75	132	54	252	82	26	75	49
300 CFM/ton 75/62	85	135	54	292	91	25	75	50
13/02	95	138	54	338	101	23	75	52
400 0514/4	75	136	56	256	78	26	80	54
400 CFM/ton 80/62	85	140	56	296	88	26	80	54
00/02	95	144	57	342	99	25	80	55
400 0514/1	75	151	65	257	81	22	80	58
400 CFM/ton 80/67	85	154	64	298	90	21	80	59
00/07	95	156	63	345	98	21	80	59
400 0514/4	75	162	71	263	78	17	80	63
400 CFM/ton 80/72	85	166	70	304	88	17	80	64
00/12	95	169	70	350	97	16	80	64
400 0514/	75	139	58	255	80	22	75	53
400 CFM/ton 75/62	85	142	57	296	90	21	75	54
10/02	95	144	57	342	98	21	75	54

Table 37: ZT090 charging table - system 2

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton	75	128	54	256	80	31	80	49
80/62	85	131	53	300	88	29	80	51
00/02	95	135	52	348	97	28	80	52
300 CFM/ton	75	140	61	260	78	26	80	54
80/67	85	144	60	303	88	25	80	55
00/01	95	147	59	351	97	23	80	57
000 0514/4	75	150	68	265	77	21	80	59
300 CFM/ton 80/72	85	154	67	307	87	20	80	60
00/12	95	159	66	355	97	19	80	61
000 0514/4	75	128	54	258	77	26	75	49
300 CFM/ton 75/62	85	132	53	300	87	25	75	50
13/02	95	135	53	348	96	23	75	52
400 0514/1	75	132	57	261	76	26	80	54
400 CFM/ton 80/62	85	137	57	303	86	26	80	54
00/02	95	141	56	351	96	25	80	55
400 0514/1	75	146	65	263	77	22	80	58
400 CFM/ton 80/67	85	150	64	306	87	21	80	59
00/01	95	153	62	354	97	21	80	59
400 0514/	75	155	71	271	75	17	80	63
400 CFM/ton 80/72	85	160	70	312	86	17	80	64
00/12	95	164	69	358	96	16	80	64
400 0514/1	75	134	58	260	77	22	75	53
400 CFM/ton 75/62	85	138	57	303	87	21	75	54
13/02	95	141	56	350	96	21	75	54

Table 38: ZT102 charging table - system 1

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
200 CEM/4am	75	129	54	264	75	31	80	49
300 CFM/ton 80/62	85	131	54	305	85	30	80	50
	95	134	54	351	95	29	80	51
000 0514/4	75	139	60	269	75	26	80	54
300 CFM/ton 80/67	85	142	60	310	85	25	80	55
00/07	95	145	59	356	95	24	80	56
000 05144	75	150	69	273	75	21	80	59
300 CFM/ton 80/72	85	154	67	314	85	20	80	60
00/12	95	157	66	361	95	19	80	61
000 0514/4	75	128	53	265	75	26	75	49
300 CFM/ton 75/62	85	131	53	306	85	25	75	50
13/02	95	133	53	352	95	24	75	51
400 0514/4	75	135	57	268	75	27	80	53
400 CFM/ton 80/62	85	139	57	307	86	27	80	53
00/02	95	141	56	354	95	25	80	55
400 0514/4	75	146	65	272	75	22	80	58
400 CFM/ton 80/67	85	149	64	312	85	22	80	58
00/07	95	151	63	357	95	21	80	59
400 0514/4	75	155	72	279	75	17	80	63
400 CFM/ton 80/72	85	159	71	319	85	16	80	64
00/12	95	162	70	364	95	16	80	64
400 0514/4	75	135	57	268	75	22	75	53
400 CFM/ton 75/62	85	138	56	308	85	21	75	54
13/02	95	140	56	354	95	21	75	54

Table 39: ZT102 charging table - system 2

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
200 CEM/4	75	128	57	262	74	31	80	49
300 CFM/ton 80/62	85	131	58	303	84	30	80	50
00/02	95	135	59	350	94	29	80	51
000 0514/	75	138	62	266	75	26	80	54
300 CFM/ton 80/67	85	141	63	307	84	25	80	55
00/01	95	145	63	353	94	24	80	56
000 0514/4	75	149	70	270	74	21	80	59
300 CFM/ton 80/72	85	154	68	311	84	20	80	60
00/12	95	158	68	360	94	19	80	61
000 0514/	75	127	57	261	74	26	75	49
300 CFM/ton 75/62	85	131	57	304	84	25	75	50
13/02	95	134	58	349	94	24	75	51
400 0514/4	75	134	61	265	74	27	80	53
400 CFM/ton 80/62	85	140	58	306	86	27	80	53
00/02	95	142	62	353	94	25	80	55
400.0514/	75	146	66	269	75	22	80	58
400 CFM/ton 80/67	85	151	64	311	85	22	80	58
00/07	95	152	65	355	94	21	80	59
100 05116	75	154	74	275	74	17	80	63
400 CFM/ton 80/72	85	162	71	316	84	16	80	64
00/12	95	165	71	361	94	16	80	64
400 OFM#	75	135	59	264	75	22	75	53
400 CFM/ton 75/62	85	138	59	305	84	21	75	54
10/02	95	142	60	351	94	21	75	54

Table 40: ZT120 charging table - system 1

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton	75	124	50	261	77	31	80	49
80/62	85	127	49	305	86	30	80	50
00/02	95	129	51	354	96	28	80	52
300 CFM/ton	75	137	59	261	78	26	80	54
80/67	85	140	58	305	87	25	80	55
00/07	95	143	59	355	96	24	80	56
200 0514/4	75	149	66	266	79	21	80	59
300 CFM/ton 80/72	85	153	65	311	89	20	80	60
00/12	95	156	66	359	97	19	80	61
300 CFM/ton	75	124	51	260	76	26	75	49
75/62	85	128	50	306	86	25	75	50
70/02	95	129	52	352	96	23	75	52
400 CFM/ton	75	133	55	259	77	27	80	53
80/62	85	155	63	297	90	20	80	60
00/02	95	139	54	350	96	25	80	55
400 CFM/ton	75	145	63	263	78	22	80	58
400 CFM/ton 80/67	85	148	61	307	88	21	80	59
00/07	95	151	60	356	98	20	80	60
400 OFM/4am	75	154	70	267	77	17	80	63
400 CFM/ton 80/72	85	160	69	310	87	16	80	64
00/12	95	165	68	358	98	15	80	65
400 CEM/4	75	132	55	259	77	22	75	53
400 CFM/ton 75/62	85	135	54	304	86	21	75	54
7 3702	95	138	53	349	96	20	75	55

Table 41: ZT120 charging table - system 2

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton	75	126	52	260	76	31	80	49
80/62	85	130	52	304	85	30	80	50
00/02	95	133	54	354	94	28	80	52
300 CFM/ton	75	138	59	261	77	26	80	54
80/67	85	142	59	305	86	25	80	55
00/01	95	145	59	354	95	24	80	56
200 0514/4	75	150	65	267	76	21	80	59
300 CFM/ton 80/72	85	154	65	310	87	20	80	60
00/12	95	158	66	358	96	19	80	61
200 0514/4	75	127	52	260	75	26	75	49
300 CFM/ton 75/62	85	130	52	305	85	25	75	50
13/02	95	132	53	354	94	23	75	52
400 OFM/+	75	135	57	260	76	27	80	53
400 CFM/ton 80/62	85	157	63	296	91	20	80	60
00/02	95	142	56	351	95	25	80	55
400 OFM/+	75	144	62	264	76	22	80	58
400 CFM/ton 80/67	85	149	61	308	86	21	80	59
00/07	95	152	61	359	96	20	80	60
400 0514/	75	155	68	272	74	17	80	63
400 CFM/ton 80/72	85	160	68	313	85	16	80	64
00/12	95	164	68	362	95	15	80	65
400 OFM/6	75	133	55	260	75	22	75	53
400 CFM/ton 75/62	85	137	55	305	84	21	75	54
13/02	95	140	55	354	94	20	75	55

Table 42: ZT150 charging table - system 1

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton	75	127	52	268	75	31	80	49
80/62	85	131	52	311	85	29	80	51
00/02	95	134	53	359	95	28	80	52
300 CFM/ton	75	139	58	272	76	26	80	55
80/67	85	142	58	315	85	25	80	55
00/07	95	146	58	363	95	24	80	56
000 0514/	75	150	66	278	76	20	80	60
300 CFM/ton 80/72	85	155	64	322	86	19	80	61
00/12	95	159	64	370	96	18	80	62
000 0514/4	75	127	52	267	75	26	75	49
300 CFM/ton 75/62	85	131	52	311	85	24	75	51
13/02	95	135	52	361	95	23	75	52
400 0514/4	75	134	54	270	76	27	80	53
400 CFM/ton 80/62	85	138	54	314	86	25	80	55
00/02	95	143	54	362	96	24	80	56
400 0514/4	75	145	61	275	76	22	80	58
400 CFM/ton 80/67	85	149	59	318	86	21	80	59
00/07	95	153	59	365	96	20	80	60
400 0514/4	75	155	69	279	76	16	80	64
400 CFM/ton 80/72	85	160	67	322	86	16	80	64
00/12	95	165	66	370	96	15	80	65
400 OFM/6	75	133	54	271	76	22	75	53
400 CFM/ton 75/62	85	136	54	314	86	21	75	54
10/02	95	140	54	363	96	20	75	55

Table 43: ZT150 charging table - system 2

Air flow Indoor Db/Wb	Outdoor DB	Suction pressure	Suction temp.	Discharge pressure	Liquid temp.	Delta T Db	Entering evap Db	Leaving evap Db
300 CFM/ton	75	124	55	265	75	31	80	49
80/62	85	127	55	306	85	29	80	51
00/02	95	131	56	352	95	28	80	52
300 CFM/ton	75	135	61	268	76	26	80	55
80/67	85	139	61	311	85	25	80	55
00/01	95	142	61	357	95	24	80	56
200 0514/4	75	146	68	273	76	20	80	60
300 CFM/ton 80/72	85	150	67	316	86	19	80	61
00/12	95	155	67	363	96	18	80	62
200 0514/4	75	124	54	264	75	26	75	49
300 CFM/ton 75/62	85	128	55	306	85	24	75	51
13/02	95	131	56	354	95	23	75	52
400 CFM/ton	75	132	58	266	75	27	80	53
80/62	85	135	58	308	85	25	80	55
00/02	95	141	59	356	95	24	80	56
400 OFM/4am	75	141	65	271	76	22	80	58
400 CFM/ton 80/67	85	146	64	313	85	21	80	59
00/01	95	150	64	358	95	20	80	60
400 OFM/4am	75	150	71	275	75	16	80	64
400 CFM/ton 80/72	85	155	71	317	85	16	80	64
00/12	95	160	70	363	95	15	80	65
400 CFM/ton	75	131	58	268	75	22	75	53
400 CFM/ton 75/62	85	134	57	309	85	21	75	54
10/02	95	138	57	356	95	20	75	55

Start-up sheet

START-UP & SERVICE DATA INSTRUCTION

COMMERCIAL PACKAGE UNITS

3.0 To 40.0 TONS

START-UP CHECKLIST							
Date:							
			Zip:				
Model Number:		Serial Number:					
Qualified Start-up Technician:		Signature:					
HVAC Contractor:			Phone:				
Address:							
			Phone:				
Distributor Name:			Phone:				

WARRANTY STATEMENT

Johnson Controls/Ducted Systems is confident that this equipment will operate to the owner's satisfaction if the proper procedures are followed and checks are made at initial start-up. This confidence is supported by the 30 day dealer protection coverage portion of our standard warranty policy which states that Johnson Controls/Ducted Systems will cover parts and labor on new equipment start-up failures that are caused by a defect in factory workmanship or material, for a period of 30 days from installation. Refer to the current standard warranty policy and warranty manual for details.

In the event that communication with Johnson Controls/Ducted Systems is required regarding technical and/or warranty concerns, all parties to the discussion should have a copy of the equipment start-up sheet for reference. A copy of the original start-up sheet should be filed with the Technical Services Department.

The packaged unit is available in constant or variable air volume versions with a large variety of custom options and accessories available. Therefore, some variation in the startup procedure will exist depending upon the products capacity, control system, options and accessories installed.

This start-up sheet covers all startup check points common to all package equipment. In addition it covers essential startup check points for a number of common installation options. Depending upon the particular unit being started not all sections of this startup sheet will apply. Complete those sections applicable and use the notes section to record any additional information pertinent to your particular installation.

Warranty claims are to be made through the distributor from whom the equipment was purchased.

EQUIPMENT STARTUP

Use the local LCD or Mobile Access Portal (MAP) Gateway to complete the start-up.

A copy of the completed start-up sheet should be kept on file by the distributor providing the equipment and a copy sent to:

> Johnson Controls/Ducted Systems Technical Services Department 5005 York Drive Norman, OK 73069

> > 1034349-UCL-F-0318

SAFETY WARNINGS

The inspections and recording of data outlined in this procedure are required for start-up of Johnson Controls/Ducted Systems' packaged products. Industry recognized safety standards and practices must be observed at all times. General industry knowledge and experience are required to assure technician safety. It is the responsibility of the technician to assess all potential dangers and take all steps warranted to perform the work in a safe manner. By addressing those potential dangers, prior to beginning any work, the technician can perform the work in a safe manner with minimal risk of injury.

Lethal voltages are present during some start-up checks. Extreme caution must be used at all times.

Moving parts may be exposed during some startup checks. Extreme caution must be used at all times.

NOTE: Read and review this entire document before beginning any of the startup procedures.

DESIGN APPLICATION INFORMATION

This information will be available from the specifying engineer who selected the equipment. If the system is a VAV system the CFM will be the airflow when the remote VAV boxes are in the

ADDITIONAL APPLICATION NOTES FROM SPECIFYING ENGINEER:

full open position and the frequency drive is operating at 60 HZ. Do not proceed with the equipment start-up without the design CFM information.

Design Supply Air CFM:	Design Return Air CFM:	
Design Outdoor Air CFM At Minimum Position:		
Total External Static Pressure:		
Supply Static Pressure:		
Return Static Pressure:		
Design Building Static Pressure:		
Outside Air Dilution: Economizer Position Percentage:		_ CFM:
Supply Gas Pressure After Regulator W/o Heat Active	e	Inches

REFERENCE

General Inspection	Completed	See Notes
Unit inspected for shipping, storage, or rigging damage		
Unit installed with proper clearances		
Unit installed within slope limitations		
Refrigeration system checked for gross leaks (presence of oil)		
Terminal screws and wiring connections checked for tightness		
Filters installed correctly and clean		
Economizer hoods installed in operating position		
Condensate drain trapped properly, refer to Installation Manual		
Economizer damper linkage tight		
Gas Heat vent hood installed		
All field wiring (power and control) complete		
	•	!
Air Moving Inspection	Completed	See Notes
Alignment of drive components		
Belt tension adjusted properly		
Blower pulleys tight on shaft, bearing set screws tight, wheel tight to shaft		
Pressure switch or transducer tubing installed properly		
Exhaust Inspection Powered □ Barometric Relief □	Completed	See Notes
Check hub for tightness		
Check fan blade for clearance		
Check for proper rotation		
Check for proper mounting (screen faces towards unit)		
Prove operation by increasing minimum setting on economizer		
	•	
Economizer Inspection Standard BAS	Completed	See Notes
CO ₂ sensor installed Yes □ No □		
Check economizer setting (Reference Smart Equipment™ Control Board LCD menu location)		
Prove economizer open/close through Smart Equipment™ Board Setting		
Reheat Mode Normal □ or Alternate □	Not Applicable □	
Humidity Sensor (2SH0401)		

Operating Measurements - Air Flow

rotation with the Bypass switch set in the LIN		ne optional Manua			ins ☐ Cond. Fans ☐
Pressure drop across dry evaporator coil (A	maximum design (CFM) ¹			IWC
External Static Pressure					IWC
Return Static Pressure					IWC
Supply Static Pressure					IWC
Supply Air CFM Using Dry Coil Chart					CFM
Final Adjusted Supply Air CFM ²					CFM
Was a motor pulley adjustment or change r Was it necessary to increase of decrease the lifthe motor pulley size was changed, meast Blower Motor HP	ne airflow to meet the sure the outside diame	design conditions? ters of the motor and		and record	those diameters here;
Pulley Pitch Diameter	Turns Out	Final Turns Out_			
Blower Pulley Pitch Diameter	Fixed Sh	eave			
	ELECTR	ICAL DATA			
T1 - T2	Volts	T2 - T3			Volts
Control Voltage	Volts	T1 - T3			Volts

Device	Nameplate	Measured List All Three Amperages
Supply Fan Motor ^{1, 2}	AMPS	AMPS
Exhaust Motor (Dampers 100%)	AMPS	AMPS
Condenser Fan #1	AMPS	AMPS
Condenser Fan #2 (if equipped)	AMPS	AMPS
Condenser Fan #3 (if equipped)	AMPS	AMPS
Condenser Fan #4 (if equipped)	AMPS	AMPS
Compressor #1	AMPS	AMPS
Compressor #2 (if equipped)	AMPS	AMPS
Compressor #3 (if equipped)	AMPS	AMPS
Compressor #4 (if equipped)	AMPS	AMPS

- 1. VAV units with heat section simulate heat call to drive VAV boxes and VFD/IGV to maximum design airflow position.
- 2. VAV units without heat section VAV boxes must be set to maximum design airflow position.

OPERATING MEASUREMENTS - COOLING

Stage	Discharge Pressure	Discharge Temp.	Liquid Line Temp. ¹	Subcooling ²	Suction Pressure	Suction Temp.	Superheat
First	#	0	0	0	#	0	۰
Second (if equipped)	#	0	0	0	#	0	0
Third (if equipped)	#	0	0	0	#	0	٥
Fourth (if equipped)	#	٥	0	0	#	٥	٥
Reheat 1st Stage	#	٥	0	0	#	0	۰

1	Liquid	temperature	should	be taken	before	filter/drier

Outside air temperature	°F db	°F wb	%RH
Return Air Temperature	°F db	°F wb	%RH
Mixed Air Temperature	°F db	°F wb	%RH
Supply Air Temperature	°F db	°F wb	%RH

REFRIGERANT SAFETIES

Action	Completed	See Notes
Prove Compressor Rotation (3 phase only) by gauge pressure		
Prove High Pressure Safety, All Systems		
Prove Low Pressure Safety, All Systems		

OPERATING MEASUREMENTS - GAS HEATING

Fuel Type:	Ц	Natural Gas	Ц	LP Gas

Action	Completed	See Notes	
Check for gas leaks			
Prove Ventor Motor Operation			
Prove Primary Safety Operation			
Prove Auxiliary Safety Operation			
Prove Rollout Switch Operation			
Prove Smoke Detector Operation			
	Stage 1	IWC	
Manifold Pressure	Stage 2 (If Equipped)	IWC	
	Stage 3 (If Equipped)	IWC	
Supply gas pressure at full fire	IWC		
Check temperature rise ¹	☐ measured at full fire	°F	

^{1.} Input X Eff. (BTU output) 1.08 X Temp. Rise

^{2.} Subtract 10 psi from discharge pressure for estimated liquid line pressure

OPERATIONAL MEASUREMENTS - STAGING CONTROLS

Verify Proper Operation of Heating/Cooling Staging Controls	
Create a cooling demand at the Thermostat, BAS System or Smart Equipment™ Verify that cooling/economizer stages are energized.	
Create a heating demand at the Thermostat, BAS System or Smart Equipment™ Verify that heating stages are energized.	
Verify Proper Operation of the Variable Frequency Drive (If Required)	
Verify that motor speed modulates with duct pressure change.	
FINAL - INSPECTION	
Verify that all operational control set points have been set to desired value Scroll through all setpoints and change as may be necessary to suit the occupant requirements.	
Verify that all option parameters are correct Scroll through all option parameters and ensure that all installed options are enabled in the software and all others are disabled in the software. (Factory software settings should match the installed options)	
Verify that all access panels have been closed and secured	
Save a backup file from the unit control board onto a USB flash drive.	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Subject to change without notice. Printed in U.S.A. Copyright © 2018 by Johnson Controls, Inc. All rights reserved.

5567610-YIM-B-1218

Supersedes: 5567610-YIM-A-1018